亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Molecular Generative Model of COVID-19 Main Protease Inhibitors Using Long Short-Term Memory-Based Recurrent Neural Network

生物信息学 蛋白酶 冠状病毒 对接(动物) 计算生物学 活动站点 分子动力学 2019年冠状病毒病(COVID-19) 化学 生物 组合化学 生物化学 医学 基因 传染病(医学专业) 计算化学 护理部 疾病 病理
作者
Arash Mehrzadi,Elham Rezaee,Sajjad Gharaghani,Zeynab Fakhar,Seyed Mohsen Mirhosseini
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
标识
DOI:10.1089/cmb.2023.0064
摘要

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for the coronavirus. First, the model was trained to generate drug compounds in the form of valid simplified molecular-input line-entry system strings. Then, the structures of COVID-19 main protease inhibitors were applied to fine-tune the model. After fine-tuning, the network could generate new molecular structures as novel SARS-CoV-2 main protease inhibitors. Molecular docking exhibited that some generated compounds have the proper affinity to the active site of the protease. Molecular Dynamics simulations explored binding free energies of the compounds over simulation trajectories. In addition, in silico absorption, distribution, metabolism, and excretion studies showed that some novel compounds could be formulated as orally active agents. Based on molecular docking and molecular dynamics simulation studies, compound AADH possessed significant binding affinity and presumably inhibition against the SARS-CoV-2 main protease enzyme. Therefore, the proposed deep learning-based model was capable of generating promising anti-COVID-19 drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kamalika完成签到,获得积分10
6秒前
9秒前
xun发布了新的文献求助10
14秒前
14秒前
CodeCraft应助xun采纳,获得10
22秒前
39秒前
42秒前
xun发布了新的文献求助10
49秒前
56秒前
1分钟前
1分钟前
Eugene完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xun完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
af完成签到,获得积分10
2分钟前
3分钟前
婕仔发布了新的文献求助10
3分钟前
3分钟前
婕仔完成签到,获得积分10
3分钟前
花椰菜完成签到,获得积分20
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
科目三应助花椰菜采纳,获得10
3分钟前
3分钟前
4分钟前
花椰菜发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088