亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Road damage detection method based on improved YOLOv8n

计算机科学 增采样 卷积(计算机科学) 特征提取 特征(语言学) 棱锥(几何) 人工智能 领域(数学) 模式识别(心理学) 钥匙(锁) 目标检测 数据挖掘 人工神经网络 图像(数学) 光学 物理 哲学 语言学 计算机安全 纯数学 数学
作者
Haowei Li,Xin Chen
标识
DOI:10.1117/12.3014574
摘要

An improved YOLOv8n network model is proposed to cope with key challenges in road damage detection, including feature extraction, multi-scale feature processing, fusion, and efficiency. By integrating the feature extraction structure RepVGG-SSE and the multi-branch downsampling into the backbone, the receptive field of our model is broadened so that it is capable of dealing with the diverse road damage scales. As part of our model, the Efficient-GFPN feature pyramid structure makes effective fusion of multi-scale features possible, and the performance for detecting objects of different sizes and complexities is enhanced greatly. Additionally, the lightweight convolution model GPConv is proposed to replace the 3x3 Conv in the C2f structure in the neck layer, so that both the parameters and computational complexity of the network model can be reduced greatly without compromising accuracy, so as to achieve the balance of efficiency and performance of the detection model in a reasonable way. The Improved YOLOv8n network was trained and validated on the RDD-2020 and UAPD datasets, and both the ablation and comparison experimental results demonstrate that the improved YOLOv8n model is both effective and efficient, and outperforms the state-of-the-art methods, suggesting it a promising solution to the real-world road damage detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
1秒前
HaCat应助科研通管家采纳,获得10
1秒前
搜集达人应助可爱丹彤采纳,获得10
4秒前
8秒前
万能图书馆应助可爱丹彤采纳,获得10
21秒前
柚又完成签到 ,获得积分10
38秒前
韩雨桐完成签到 ,获得积分10
44秒前
45秒前
46秒前
Gabriel发布了新的文献求助10
50秒前
852应助可爱丹彤采纳,获得10
52秒前
52秒前
57秒前
深情安青应助可爱丹彤采纳,获得10
1分钟前
1分钟前
领导范儿应助Gabriel采纳,获得10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
1分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Tales完成签到 ,获得积分10
2分钟前
沉静的碧琴完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
2分钟前
w123完成签到,获得积分10
2分钟前
zwb完成签到 ,获得积分10
2分钟前
SciGPT应助可爱丹彤采纳,获得10
2分钟前
Doctor.TANG完成签到 ,获得积分10
2分钟前
祁言完成签到 ,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
3分钟前
QQ完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639