Predictive modeling based on artificial neural networks for membrane fouling in a large pilot-scale anaerobic membrane bioreactor for treating real municipal wastewater

膜污染 结垢 人工神经网络 废水 计算机科学 环境科学 工艺工程 生化工程 工程类 人工智能 环境工程 化学 生物化学
作者
Tianjie Wang,Yu‐You Li
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169164-169164 被引量:5
标识
DOI:10.1016/j.scitotenv.2023.169164
摘要

Membrane fouling is the primary obstacle to applying anaerobic membrane bioreactors (AnMBRs) in municipal wastewater treatment. This issue holds critical significance as efficient wastewater treatment serves as a cornerstone for achieving environmental sustainability. This study uses machine learning to predict membrane fouling, taking advantage of rapid computational and algorithmic advances. Based on the 525-day operation data of a large pilot-scale AnMBR for treating real municipal wastewater, regression prediction was realized using multilayer perceptron (MLP) and long short-term memory (LSTM) artificial neural networks under substantial variations in operating conditions. The models involved employing the organic loading rate, suspended solids concentration, protein concentration in extracellular polymeric substance (EPSp), polysaccharide concentration in EPS (EPSc), reactor temperature, and flux as input features, and transmembrane pressure as the prediction target output. Hyperparameter optimization enhanced the regression prediction accuracies, and the rationality and utility of the MLP model for predicting large-scale AnMBR membrane fouling were confirmed at global and local levels of interpretability analysis. This work not only provides a methodological advance but also underscores the importance of merging environmental engineering with computational advancements to address pressing environmental challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一介书生发布了新的文献求助10
1秒前
完美世界应助潘继坤采纳,获得10
1秒前
1秒前
hjy发布了新的文献求助10
2秒前
淡然丹蝶发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729429
求助须知:如何正确求助?哪些是违规求助? 5318294
关于积分的说明 15316682
捐赠科研通 4876449
什么是DOI,文献DOI怎么找? 2619388
邀请新用户注册赠送积分活动 1568902
关于科研通互助平台的介绍 1525470