Predicting the Stability of Single-Atom Catalysts in Electrochemical Reactions

催化作用 密度泛函理论 电化学 化学 Pourbaix图 化学稳定性 溶解 计算化学 Atom(片上系统) 化学物理 过渡金属 共价键 石墨烯 催化循环 纳米技术 材料科学 物理化学 电极 有机化学 计算机科学 嵌入式系统
作者
Giovanni Di Liberto,Livia Giordano,Gianfranco Pacchioni
出处
期刊:ACS Catalysis 卷期号:14 (1): 45-55 被引量:33
标识
DOI:10.1021/acscatal.3c04801
摘要

The attention toward single-atom catalysts (SACs) for electrochemical processes is growing at an impressive pace. Electronic structure calculations play an important role in this race by providing proposals of potentially relevant catalysts based on screening studies or on the identification of descriptors of the chemical activity. So far, almost all of these predictions ignore a crucial aspect in the design of a catalyst: its stability. We propose a simple yet general first-principles approach to predict the stability of SACs under working conditions of pH and applied voltage. This is based on the construction of a thermodynamic cycle, where part of the information is taken from experiment and the rest from density functional theory (DFT) calculations. In particular, we make use of the formalism of Pourbaix diagrams to investigate the stability of SACs in reductive or oxidative conditions and we identify those that show a pronounced tendency to dissolve or to form other chemical species. Applying the procedure to four transition metal atoms, Cr, Mn, Fe, and Co, and to three supports, N-doped graphene, carbon nitride, and covalent organic frameworks, we show that a key factor in determining the final stability is the binding energy of the free metal atom to the support. The results show that several potentially very good catalysts in key electrochemical reactions are, in fact, dramatically prone to dissolution or transformation in other chemical species, suggesting that every prediction of the SAC's catalytic activity should be accompanied by a parallel investigation of the stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pio发布了新的文献求助10
1秒前
在水一方应助顺利绿真采纳,获得10
1秒前
苹果花发布了新的文献求助10
2秒前
CipherSage应助spy采纳,获得10
2秒前
乐观的颦发布了新的文献求助10
2秒前
3秒前
3秒前
天天快乐应助fuchao采纳,获得10
4秒前
4秒前
FashionBoy应助滕擎采纳,获得10
5秒前
5秒前
6秒前
6秒前
调研昵称发布了新的文献求助30
8秒前
8秒前
hjw应助一一采纳,获得10
8秒前
9秒前
爆米花应助1234采纳,获得10
9秒前
R18686226306发布了新的文献求助10
9秒前
9秒前
海绵宝宝前列腺儿完成签到,获得积分10
9秒前
科目三应助鲸落采纳,获得10
10秒前
CinnabarT完成签到,获得积分10
10秒前
11秒前
阿莫西林皮蛋完成签到,获得积分10
11秒前
椰椰发布了新的文献求助10
11秒前
平淡又柔发布了新的文献求助10
12秒前
够了发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
含蓄虔纹发布了新的文献求助10
14秒前
spy发布了新的文献求助10
14秒前
Jiawen发布了新的文献求助10
15秒前
大模型应助寒冷的奇异果采纳,获得10
15秒前
zyqy完成签到 ,获得积分10
16秒前
小陶完成签到,获得积分10
17秒前
希望天下0贩的0应助滕擎采纳,获得10
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490333
求助须知:如何正确求助?哪些是违规求助? 3077289
关于积分的说明 9148413
捐赠科研通 2769525
什么是DOI,文献DOI怎么找? 1519761
邀请新用户注册赠送积分活动 704287
科研通“疑难数据库(出版商)”最低求助积分说明 702113