Colorimetric microneedle sensor using deep learning algorithm for meat freshness monitoring

食物腐败 计算机科学 肉类腐败 卷积神经网络 人工智能 食品科学 算法 化学 生物 遗传学 细菌
作者
Jie Wang,Linlin Xia,Han Liu,Chong Zhao,S. J. Ming,Jingyi Wu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:481: 148474-148474 被引量:20
标识
DOI:10.1016/j.cej.2023.148474
摘要

Currently, the developed testing methods determining meat freshness are time-consuming, inconvenient, or have high specialty requirements. Herein, we proposed a colorimetric microneedle sensor (CMS) using a deep learning algorithm for visualized meat freshness monitoring. The CMS was obtained by molding edible hydrogels containing pH-responsive anthocyanins, which change colors because of the structure change of anthocyanins in response to pH. When attached to meat, the CMS was capable of penetrating the meat and extracting tissue fluids by capillary action. With meat spoilage, the pH of the tissue fluid gradually rose, leading to a change in CMS from pink to purple and finally to dark blue. Thus, according to variations of CMS colors, in situ and visualized detection of meat freshness was achieved. Further, a deep learning algorithm was applied to integrate with CMS to form a smartphone application (App), allowing for more convenient and accurate freshness detection. Images of CMS attached to the meat with different freshness were collected to form a training source as the input of the convolutional neural network (CNN). Through convolving CMS color features, the meat freshness classified as "fresh", "less fresh", and "spoiled" was finally outputted. With the incorporation of CNN, the App enabled users to identify the freshness of meat from stored photos or real-time images of CMS-labeled meats in a fast, accurate, portable, and universal way. This visualized detection strategy of CMS combined with an algorithm-integrated App has a promising potential for wide applications such as food safety, health monitoring, and environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
争当科研巨匠完成签到,获得积分10
刚刚
2秒前
青柳完成签到 ,获得积分10
4秒前
Tong发布了新的文献求助10
6秒前
7秒前
步步高完成签到,获得积分10
9秒前
合适的寄灵完成签到 ,获得积分10
9秒前
jkaaa完成签到,获得积分10
11秒前
13秒前
ZhaoCun完成签到,获得积分10
15秒前
Cai完成签到,获得积分10
16秒前
西宁完成签到,获得积分10
16秒前
泡泡茶壶o完成签到 ,获得积分10
16秒前
无极2023完成签到 ,获得积分0
19秒前
笨笨梦松完成签到,获得积分10
19秒前
黑眼圈完成签到 ,获得积分10
19秒前
logolush完成签到 ,获得积分10
20秒前
浅浅完成签到,获得积分10
23秒前
激昂的如柏完成签到,获得积分10
27秒前
帅气的藏鸟完成签到,获得积分10
28秒前
无花果应助王九八采纳,获得10
29秒前
干净盼山完成签到,获得积分10
30秒前
清风完成签到 ,获得积分10
30秒前
啊哈啊哈额完成签到,获得积分10
32秒前
满意代萱完成签到 ,获得积分10
32秒前
追寻的亦旋完成签到 ,获得积分10
33秒前
奋斗机器猫完成签到 ,获得积分10
33秒前
一苇以航完成签到 ,获得积分10
35秒前
八八九九九1完成签到,获得积分10
35秒前
sdfdzhang完成签到 ,获得积分0
36秒前
火星人完成签到 ,获得积分10
37秒前
ZHZ完成签到,获得积分10
37秒前
38秒前
mayberichard完成签到,获得积分10
38秒前
王九八发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
40秒前
优雅的千雁完成签到,获得积分10
40秒前
高高的天亦完成签到 ,获得积分10
41秒前
Tysonqu完成签到,获得积分10
51秒前
stop here完成签到,获得积分10
52秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960158
求助须知:如何正确求助?哪些是违规求助? 3506308
关于积分的说明 11128989
捐赠科研通 3238480
什么是DOI,文献DOI怎么找? 1789744
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095