Colorimetric microneedle sensor using deep learning algorithm for meat freshness monitoring

食物腐败 计算机科学 肉类腐败 卷积神经网络 人工智能 食品科学 算法 化学 生物 遗传学 细菌
作者
Jie Wang,Linlin Xia,Han Liu,Chong Zhao,S. J. Ming,Jingyi Wu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148474-148474 被引量:5
标识
DOI:10.1016/j.cej.2023.148474
摘要

Currently, the developed testing methods determining meat freshness are time-consuming, inconvenient, or have high specialty requirements. Herein, we proposed a colorimetric microneedle sensor (CMS) using a deep learning algorithm for visualized meat freshness monitoring. The CMS was obtained by molding edible hydrogels containing pH-responsive anthocyanins, which change colors because of the structure change of anthocyanins in response to pH. When attached to meat, the CMS was capable of penetrating the meat and extracting tissue fluids by capillary action. With meat spoilage, the pH of the tissue fluid gradually rose, leading to a change in CMS from pink to purple and finally to dark blue. Thus, according to variations of CMS colors, in situ and visualized detection of meat freshness was achieved. Further, a deep learning algorithm was applied to integrate with CMS to form a smartphone application (App), allowing for more convenient and accurate freshness detection. Images of CMS attached to the meat with different freshness were collected to form a training source as the input of the convolutional neural network (CNN). Through convolving CMS color features, the meat freshness classified as "fresh", "less fresh", and "spoiled" was finally outputted. With the incorporation of CNN, the App enabled users to identify the freshness of meat from stored photos or real-time images of CMS-labeled meats in a fast, accurate, portable, and universal way. This visualized detection strategy of CMS combined with an algorithm-integrated App has a promising potential for wide applications such as food safety, health monitoring, and environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁NING完成签到,获得积分10
1秒前
www完成签到,获得积分10
1秒前
科目三应助江璃采纳,获得10
1秒前
jiao发布了新的文献求助10
1秒前
1秒前
1秒前
Kenzonvay完成签到,获得积分10
2秒前
2秒前
小巧曲奇发布了新的文献求助10
2秒前
AKKKK完成签到,获得积分10
3秒前
禹代秋发布了新的文献求助10
3秒前
www发布了新的文献求助10
3秒前
3秒前
感谢走弓转发科研通微信,获得积分50
4秒前
支葵发布了新的文献求助10
6秒前
朴素的台灯完成签到,获得积分10
6秒前
rita发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
舒心的铃铛完成签到,获得积分10
7秒前
豆豆小baby完成签到,获得积分10
7秒前
Cd完成签到,获得积分20
8秒前
9秒前
无比璀璨的番茄完成签到,获得积分20
9秒前
LJJ完成签到,获得积分10
10秒前
10秒前
小六发布了新的文献求助10
10秒前
Lucas应助飞云采纳,获得10
11秒前
爆米花应助一如果一采纳,获得10
11秒前
坦率的乐蕊完成签到 ,获得积分10
11秒前
法号胡来完成签到,获得积分10
12秒前
风中夜天完成签到,获得积分20
12秒前
s950124发布了新的文献求助10
13秒前
l玖发布了新的文献求助10
13秒前
13秒前
不配.应助难过的青争采纳,获得10
14秒前
14秒前
善学以致用应助支葵采纳,获得10
14秒前
领导范儿应助Denmark采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847