Colorimetric microneedle sensor using deep learning algorithm for meat freshness monitoring

食物腐败 计算机科学 肉类腐败 卷积神经网络 人工智能 食品科学 算法 化学 生物 遗传学 细菌
作者
Jie Wang,Linlin Xia,Han Liu,Chong Zhao,S. J. Ming,Jingyi Wu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148474-148474 被引量:33
标识
DOI:10.1016/j.cej.2023.148474
摘要

Currently, the developed testing methods determining meat freshness are time-consuming, inconvenient, or have high specialty requirements. Herein, we proposed a colorimetric microneedle sensor (CMS) using a deep learning algorithm for visualized meat freshness monitoring. The CMS was obtained by molding edible hydrogels containing pH-responsive anthocyanins, which change colors because of the structure change of anthocyanins in response to pH. When attached to meat, the CMS was capable of penetrating the meat and extracting tissue fluids by capillary action. With meat spoilage, the pH of the tissue fluid gradually rose, leading to a change in CMS from pink to purple and finally to dark blue. Thus, according to variations of CMS colors, in situ and visualized detection of meat freshness was achieved. Further, a deep learning algorithm was applied to integrate with CMS to form a smartphone application (App), allowing for more convenient and accurate freshness detection. Images of CMS attached to the meat with different freshness were collected to form a training source as the input of the convolutional neural network (CNN). Through convolving CMS color features, the meat freshness classified as "fresh", "less fresh", and "spoiled" was finally outputted. With the incorporation of CNN, the App enabled users to identify the freshness of meat from stored photos or real-time images of CMS-labeled meats in a fast, accurate, portable, and universal way. This visualized detection strategy of CMS combined with an algorithm-integrated App has a promising potential for wide applications such as food safety, health monitoring, and environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
tly完成签到,获得积分10
1秒前
魔王小豆包完成签到,获得积分10
2秒前
2秒前
3秒前
舒心的紫雪完成签到 ,获得积分10
4秒前
6秒前
一粒苹果酒完成签到,获得积分10
6秒前
7秒前
阿西吧完成签到,获得积分10
8秒前
9秒前
9秒前
小乐发布了新的文献求助10
9秒前
9秒前
傅剑寒发布了新的文献求助30
9秒前
瓜6发布了新的文献求助10
10秒前
十是十发布了新的文献求助10
10秒前
科研通AI6应助山逍采纳,获得10
10秒前
Tom完成签到 ,获得积分10
11秒前
11秒前
傲娇芷容完成签到,获得积分20
13秒前
林新杰发布了新的文献求助10
13秒前
NexusExplorer应助gaintpeople采纳,获得10
15秒前
斯文败类应助ysy采纳,获得10
16秒前
科研小能手完成签到,获得积分10
16秒前
16秒前
zzzdx发布了新的文献求助10
17秒前
郭大侠发布了新的文献求助10
17秒前
英俊的如霜完成签到,获得积分10
18秒前
我是老大应助GTY采纳,获得30
19秒前
20秒前
seul完成签到,获得积分20
20秒前
风清扬发布了新的文献求助10
21秒前
21秒前
Una发布了新的文献求助10
21秒前
那就来吧完成签到,获得积分20
21秒前
21秒前
Hali完成签到,获得积分10
22秒前
瓜6完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354701
求助须知:如何正确求助?哪些是违规求助? 4486753
关于积分的说明 13967752
捐赠科研通 4387338
什么是DOI,文献DOI怎么找? 2410339
邀请新用户注册赠送积分活动 1402728
关于科研通互助平台的介绍 1376552