Machine Learning for Modeling Oscillating Heat Pipes: A Review

传热 机械 热管 机械工程 材料科学 计算机科学 热力学 环境科学 物理 工程类
作者
Roberto Núñez,Shahabeddin K. Mohammadian,Tahmid Hasan Rupam,Ramy H. Mohammed,Guoliang Huang,Hongbin Ma
出处
期刊:Journal of Thermal Science and Engineering Applications [ASME International]
卷期号:16 (4) 被引量:1
标识
DOI:10.1115/1.4064597
摘要

Abstract Oscillating heat pipes are heat transfer devices with the potential of addressing some of the most pressing current thermal management problems, from the miniaturization of microchips to the development of hypersonic vehicles. Since their invention in the 1990s, numerous studies have attempted to develop predictive and inverse design models for oscillating heat pipe function. However, the field still lacks robust and flexible models that can be used to prescribe design specifications based on a target performance. The fundamental difficulty lies in the fact that, despite the simplicity of their design, the mechanisms behind the operation of oscillating heat pipes are complex and only partially understood. To circumvent this limitation, over the last several years, there has been increasing interest in the application of machine learning techniques to oscillating heat pipe modeling. Our survey of the literature has revealed that machine learning techniques have successfully been used to predict different aspects of the operation of these devices. However, many fundamental questions such as which machine learning models are better suited for this task or whether their results can extrapolate to different experimental setups remain unanswered. Moreover, the wealth of knowledge that the field has produced regarding the physical phenomena behind oscillating heat pipes is still to be leveraged by machine learning techniques. Herein, we discuss these applications in detail, emphasizing their advantages, limitations, as well as potential paths forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无住生心完成签到,获得积分10
刚刚
弄井完成签到,获得积分10
1秒前
打打应助大雄采纳,获得10
2秒前
hdh完成签到,获得积分10
6秒前
hyx完成签到 ,获得积分10
8秒前
善良的火完成签到 ,获得积分10
10秒前
一心想出文章完成签到,获得积分10
11秒前
12秒前
万能图书馆应助雷子采纳,获得10
14秒前
兜兜完成签到 ,获得积分10
14秒前
奶糖喵完成签到 ,获得积分10
15秒前
LM完成签到,获得积分10
17秒前
17秒前
zhangxr发布了新的文献求助10
18秒前
19秒前
oceanao应助靓丽安珊采纳,获得10
21秒前
hao发布了新的文献求助10
23秒前
夕赣完成签到 ,获得积分10
24秒前
26秒前
三木完成签到 ,获得积分10
26秒前
晨雾完成签到 ,获得积分10
29秒前
王螺丝完成签到,获得积分10
29秒前
雷子发布了新的文献求助10
30秒前
lyne完成签到 ,获得积分10
31秒前
31秒前
zhang完成签到,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
tramp应助科研通管家采纳,获得10
35秒前
哎嘿应助科研通管家采纳,获得10
35秒前
852应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得10
35秒前
tramp应助科研通管家采纳,获得20
35秒前
哎嘿应助科研通管家采纳,获得10
35秒前
研友_VZG7GZ应助科研通管家采纳,获得10
36秒前
梓泽丘墟应助科研通管家采纳,获得10
36秒前
Gilana应助科研通管家采纳,获得20
36秒前
小马甲应助科研通管家采纳,获得10
36秒前
coco应助科研通管家采纳,获得20
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175