Scaling-Enhanced Scaling during Electrodialysis Desalination

缩放比例 阴极 电渗析 海水淡化 电解质 限制电流 电流密度 反向电渗析 电解 电极 离子 离子交换 相(物质) 分析化学(期刊) 二价 材料科学 化学工程 化学物理 堆栈(抽象数据类型) 反渗透 无机化学 热力学 过电位 水溶液 化学
作者
Hong Liu,Qianhong She
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (5): 1063-1072 被引量:23
标识
DOI:10.1021/acsestengg.3c00549
摘要

Scaling is one of the critical issues limiting the performance of electrodialysis (ED) desalination. In this study, we systematically investigated scaling during ED desalination of seawater. We observed that severe scaling occurred on the surfaces of the cathode and cation exchange membrane (CEM) facing the cathode chamber, which further induced the occurrence of scaling on the surfaces of the CEM and anion exchange membrane (AEM) facing the adjacent dilute chamber. We revealed that the formation and evolution of scaling in an entire ED stack undergo 3 sequential phases. In phase 1 during the early stage of ED desalination, divalent cations (e.g., Mg2+ and Ca2+) transport through the CEM into the cathode chamber and accumulate in the electrolyte solution, and meanwhile, OH– ions are generated via water electrolysis at the cathode, both of which synergistically increase the tendency of electrode scaling. In phase 2 after a period of desalination, fast reactions between divalent cations and OH– ions result in the occurrence of scaling in the cathode chamber. Under the typical constant-current operating mode, scaling on the CEM surface facing the cathode reduces effective membrane area, which leads to an increase in the local current density through the CEM. In phase 3, when the local current density exceeds the limiting current density, water splitting occurs on the surface of the CEM facing the dilute chamber, which induces the generation of OH– and thereby enhances the crystallization on this surface. Eventually, scaling in the cathode chamber further enhances scaling on ion exchange membranes in the adjacent dilute chamber. The mechanisms of scaling formation and evolution unveiled in this study provide important implications for scaling mitigation during ED desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
丘比特应助明理的帆布鞋采纳,获得10
1秒前
我是老大应助俊逸的翅膀采纳,获得10
1秒前
2秒前
万能图书馆应助科研狗采纳,获得10
2秒前
yznfly应助欢喜夏之采纳,获得50
2秒前
2秒前
2秒前
wwwwww完成签到,获得积分10
2秒前
可靠幼旋发布了新的文献求助10
2秒前
2秒前
hahaagain完成签到,获得积分10
2秒前
丘比特应助傅取采纳,获得10
2秒前
3秒前
哈哈哈完成签到 ,获得积分10
3秒前
VVzza完成签到,获得积分20
4秒前
usu发布了新的文献求助10
4秒前
hyx7735完成签到,获得积分10
4秒前
努力挪砖完成签到,获得积分10
4秒前
Jasper应助alex采纳,获得10
5秒前
白白嫩嫩发布了新的文献求助20
5秒前
5秒前
5秒前
Darlene发布了新的文献求助10
5秒前
6秒前
传奇3应助曹佳凝采纳,获得10
6秒前
纯真芙发布了新的文献求助10
6秒前
hahaagain发布了新的文献求助10
6秒前
clock完成签到 ,获得积分10
6秒前
guozizi发布了新的文献求助10
7秒前
VVzza发布了新的文献求助10
7秒前
8秒前
8秒前
HoldenX发布了新的文献求助10
8秒前
8秒前
medmh完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494