LSKANet: Long Strip Kernel Attention Network for Robotic Surgical Scene Segmentation

计算机科学 人工智能 分割 核(代数) 特征(语言学) 块(置换群论) 计算机视觉 模式识别(心理学) 相似性(几何) 边界(拓扑) 图像分割 图像(数学) 数学 组合数学 数学分析 哲学 语言学 几何学
作者
Min Liu,Yubin Han,Jiazheng Wang,C.-H. Wang,Yaonan Wang,Erik Meijering
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1308-1322 被引量:8
标识
DOI:10.1109/tmi.2023.3335406
摘要

Surgical scene segmentation is a critical task in Robotic-assisted surgery. However, the complexity of the surgical scene, which mainly includes local feature similarity (e.g., between different anatomical tissues), intraoperative complex artifacts, and indistinguishable boundaries, poses significant challenges to accurate segmentation. To tackle these problems, we propose the Long Strip Kernel Attention network (LSKANet), including two well-designed modules named Dual-block Large Kernel Attention module (DLKA) and Multiscale Affinity Feature Fusion module (MAFF), which can implement precise segmentation of surgical images. Specifically, by introducing strip convolutions with different topologies (cascaded and parallel) in two blocks and a large kernel design, DLKA can make full use of region- and strip-like surgical features and extract both visual and structural information to reduce the false segmentation caused by local feature similarity. In MAFF, affinity matrices calculated from multiscale feature maps are applied as feature fusion weights, which helps to address the interference of artifacts by suppressing the activations of irrelevant regions. Besides, the hybrid loss with Boundary Guided Head (BGH) is proposed to help the network segment indistinguishable boundaries effectively. We evaluate the proposed LSKANet on three datasets with different surgical scenes. The experimental results show that our method achieves new state-of-the-art results on all three datasets with improvements of 2.6%, 1.4%, and 3.4% mIoU, respectively. Furthermore, our method is compatible with different backbones and can significantly increase their segmentation accuracy. Code is available at https://github.com/YubinHan73/LSKANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助冷傲的板栗采纳,获得10
1秒前
Freekor发布了新的文献求助10
1秒前
繁荣的青旋完成签到 ,获得积分10
2秒前
大模型应助余任游采纳,获得10
2秒前
nimonimo完成签到,获得积分10
2秒前
lanjq兰坚强完成签到,获得积分10
2秒前
顾暖发布了新的文献求助10
3秒前
4秒前
4秒前
小何0404完成签到,获得积分10
5秒前
5秒前
传奇3应助追寻柚子采纳,获得10
5秒前
7秒前
7秒前
今夜属于雪花月完成签到,获得积分10
8秒前
8秒前
8秒前
柠檬汽水完成签到,获得积分10
9秒前
11完成签到,获得积分10
9秒前
10秒前
11秒前
cy5982发布了新的文献求助10
11秒前
田様应助Freekor采纳,获得30
12秒前
14秒前
14秒前
wangdaxue发布了新的文献求助10
14秒前
jitianxing发布了新的文献求助10
14秒前
14秒前
QianShenYu完成签到,获得积分10
15秒前
ahui发布了新的文献求助10
15秒前
兆渊发布了新的文献求助10
15秒前
谢谢敏敏完成签到 ,获得积分10
15秒前
大白完成签到,获得积分10
16秒前
sean发布了新的文献求助10
16秒前
LUOYU完成签到,获得积分10
17秒前
17秒前
mingjie完成签到,获得积分10
17秒前
18秒前
BK_发布了新的文献求助10
18秒前
偷乐发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014