LSKANet: Long Strip Kernel Attention Network for Robotic Surgical Scene Segmentation

计算机科学 人工智能 分割 核(代数) 特征(语言学) 块(置换群论) 计算机视觉 模式识别(心理学) 相似性(几何) 边界(拓扑) 图像分割 图像(数学) 数学 组合数学 数学分析 哲学 语言学 几何学
作者
Min Liu,Yubin Han,Jiazheng Wang,Chun-yang WANG,Yaonan Wang,Erik Meijering
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tmi.2023.3335406
摘要

Surgical scene segmentation is a critical task in Robotic-assisted surgery. However, the complexity of the surgical scene, which mainly includes local feature similarity (e.g., between different anatomical tissues), intraoperative complex artifacts, and indistinguishable boundaries, poses significant challenges to accurate segmentation. To tackle these problems, we propose the Long Strip Kernel Attention network (LSKANet), including two well-designed modules named Dual-block Large Kernel Attention module (DLKA) and Multiscale Affinity Feature Fusion module (MAFF), which can implement precise segmentation of surgical images. Specifically, by introducing strip convolutions with different topologies (cascaded and parallel) in two blocks and a large kernel design, DLKA can make full use of region- and strip-like surgical features and extract both visual and structural information to reduce the false segmentation caused by local feature similarity. In MAFF, affinity matrices calculated from multiscale feature maps are applied as feature fusion weights, which helps to address the interference of artifacts by suppressing the activations of irrelevant regions. Besides, the hybrid loss with Boundary Guided Head (BGH) is proposed to help the network segment indistinguishable boundaries effectively. We evaluate the proposed LSKANet on three datasets with different surgical scenes. The experimental results show that our method achieves new state-of-the-art results on all three datasets with improvements of 2.6%, 1.4%, and 3.4% mIoU, respectively. Furthermore, our method is compatible with different backbones and can significantly increase their segmentation accuracy. Code is available at https://github.com/YubinHan73/LSKANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不换金正七散完成签到,获得积分10
刚刚
简单幸福完成签到 ,获得积分10
刚刚
adanf完成签到,获得积分10
1秒前
小白兔发布了新的文献求助10
1秒前
苏书白应助喜气洋洋采纳,获得10
1秒前
英俊的铭应助简单如容采纳,获得10
2秒前
小顾发布了新的文献求助10
2秒前
xxxxx发布了新的文献求助10
2秒前
liian7应助shilong.yang采纳,获得20
3秒前
HEIKU应助shilong.yang采纳,获得20
3秒前
young发布了新的文献求助10
3秒前
4秒前
5秒前
汉堡包应助顺心的水之采纳,获得10
5秒前
外向沅发布了新的文献求助10
7秒前
7秒前
哥叔华完成签到,获得积分10
8秒前
全球免费科研1完成签到 ,获得积分10
9秒前
9秒前
10秒前
小蘑菇应助Aurora采纳,获得10
11秒前
搜集达人应助波鲁克采纳,获得10
12秒前
空空完成签到,获得积分10
12秒前
13秒前
13秒前
fiona7777发布了新的文献求助10
13秒前
young完成签到,获得积分10
14秒前
15秒前
无花果应助小顾采纳,获得10
16秒前
16秒前
16秒前
16秒前
Song发布了新的文献求助10
17秒前
piglet发布了新的文献求助10
17秒前
666完成签到 ,获得积分10
17秒前
无心的紫山完成签到,获得积分10
17秒前
hj发布了新的文献求助10
18秒前
Owen应助嗡嗡嗡采纳,获得10
18秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663