Transonic Aerodynamic–Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

跨音速 气动弹性 空气动力学 非线性系统 翼型 空气动力 计算机科学 控制理论(社会学) 工程类 航空航天工程 物理 控制(管理) 量子力学 人工智能
作者
Xiangjie Yao,Rui Huang,Haiyan Hu,Haojie Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:62 (3): 1159-1178 被引量:2
标识
DOI:10.2514/1.j063360
摘要

Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic–structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid–structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的德地完成签到,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得30
1秒前
cureall应助SteveRogers采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
小蘑菇应助liuzengzhang666采纳,获得10
2秒前
yu发布了新的文献求助20
4秒前
4秒前
maoy完成签到,获得积分20
6秒前
希希完成签到 ,获得积分10
6秒前
lay发布了新的文献求助10
7秒前
兜里全是糖完成签到,获得积分10
8秒前
可爱的函函应助雪色浪漫采纳,获得10
10秒前
Hello应助lay采纳,获得10
11秒前
抹茶牛奶配布丁完成签到 ,获得积分10
15秒前
ding应助eye采纳,获得20
16秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
Orange应助糖糖采纳,获得10
20秒前
小蘑菇应助mianbao采纳,获得10
21秒前
22秒前
在下天池宫人间行走完成签到,获得积分10
22秒前
cooyuan发布了新的文献求助10
22秒前
qiqi完成签到,获得积分0
23秒前
hanna发布了新的文献求助10
23秒前
任无施发布了新的文献求助80
25秒前
25秒前
jun发布了新的文献求助10
26秒前
26秒前
26秒前
完美世界应助su采纳,获得10
27秒前
风中戎完成签到,获得积分10
29秒前
30秒前
30秒前
ED应助hanna采纳,获得10
30秒前
31秒前
希望天下0贩的0应助Sirila采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021