Transonic Aerodynamic–Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

跨音速 气动弹性 空气动力学 非线性系统 翼型 空气动力 计算机科学 控制理论(社会学) 工程类 航空航天工程 物理 控制(管理) 量子力学 人工智能
作者
Xiangjie Yao,Rui Huang,Haiyan Hu,Haojie Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:62 (3): 1159-1178 被引量:7
标识
DOI:10.2514/1.j063360
摘要

Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic–structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid–structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助sunshiying采纳,获得10
刚刚
852应助wang采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
1秒前
lzhgoashore发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
lalala应助科研通管家采纳,获得10
1秒前
香蕉觅云应助懦弱的博涛采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
changping应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
lalala应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
3秒前
月宸发布了新的文献求助10
3秒前
4秒前
Jaden发布了新的文献求助10
6秒前
Ding发布了新的文献求助10
9秒前
9秒前
Van完成签到 ,获得积分10
11秒前
orange完成签到,获得积分10
13秒前
孙傲完成签到,获得积分10
13秒前
14秒前
小二郎应助狂野映寒采纳,获得10
15秒前
Eternitymaria完成签到,获得积分10
15秒前
顾矜应助赵晴采纳,获得10
18秒前
星辰发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400