Transonic Aerodynamic–Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

跨音速 气动弹性 空气动力学 非线性系统 翼型 空气动力 计算机科学 控制理论(社会学) 工程类 航空航天工程 物理 量子力学 人工智能 控制(管理)
作者
Xiangjie Yao,Rui Huang,Haiyan Hu,Haojie Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:62 (3): 1159-1178 被引量:7
标识
DOI:10.2514/1.j063360
摘要

Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic–structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid–structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助锂离子采纳,获得10
刚刚
fanfan完成签到 ,获得积分10
刚刚
粟米发布了新的文献求助10
刚刚
好好吃饭完成签到,获得积分10
1秒前
今后应助asadman_W采纳,获得10
1秒前
1秒前
12334发布了新的文献求助10
2秒前
czcmh应助朱祥龙采纳,获得30
2秒前
我是老大应助zz采纳,获得100
2秒前
0Miles完成签到,获得积分10
2秒前
大个应助HUYAOWEI采纳,获得10
2秒前
橙子发布了新的文献求助10
2秒前
CodeCraft应助aoc采纳,获得10
2秒前
3秒前
文静的匪完成签到 ,获得积分10
3秒前
666发布了新的文献求助10
4秒前
执着的觅露完成签到 ,获得积分10
4秒前
忧心的山槐完成签到,获得积分10
4秒前
4秒前
科研通AI6应助Auba采纳,获得30
4秒前
5秒前
5秒前
堂yt发布了新的文献求助10
6秒前
液氧完成签到,获得积分10
6秒前
7秒前
YH完成签到 ,获得积分10
7秒前
Wang完成签到,获得积分10
7秒前
7秒前
8秒前
bkagyin应助单薄紫菜采纳,获得10
8秒前
研友_LJaro8完成签到,获得积分10
8秒前
pz_11发布了新的文献求助10
8秒前
9秒前
JamesPei应助Zxc采纳,获得10
9秒前
9秒前
顺利的爆米花完成签到 ,获得积分10
9秒前
三年两篇以上SCI完成签到 ,获得积分20
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132