清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transonic Aerodynamic–Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

跨音速 气动弹性 空气动力学 非线性系统 翼型 空气动力 计算机科学 控制理论(社会学) 工程类 航空航天工程 物理 量子力学 人工智能 控制(管理)
作者
Xiangjie Yao,Rui Huang,Haiyan Hu,Haojie Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:62 (3): 1159-1178 被引量:7
标识
DOI:10.2514/1.j063360
摘要

Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic–structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid–structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mufreh应助科研通管家采纳,获得100
1秒前
和谐的夏岚完成签到 ,获得积分10
27秒前
27秒前
李某某完成签到 ,获得积分10
29秒前
friend516完成签到 ,获得积分10
32秒前
zhangsan完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助50
34秒前
科研通AI6.1应助曾经问雁采纳,获得10
54秒前
知行者完成签到 ,获得积分10
57秒前
xt完成签到,获得积分20
1分钟前
TonyLee完成签到,获得积分10
1分钟前
xt关注了科研通微信公众号
1分钟前
未雨完成签到 ,获得积分10
1分钟前
研友_LN25rL完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
WangBing完成签到 ,获得积分10
2分钟前
Trico完成签到,获得积分10
2分钟前
默默问芙完成签到,获得积分10
2分钟前
我很厉害的1q完成签到,获得积分10
2分钟前
游泳池完成签到,获得积分10
2分钟前
3分钟前
qianzhihe2完成签到,获得积分10
3分钟前
曾经问雁发布了新的文献求助10
3分钟前
3分钟前
隐形曼青应助零知识采纳,获得10
3分钟前
3分钟前
零知识发布了新的文献求助10
3分钟前
鱼蛋发布了新的文献求助10
3分钟前
西柚西柚完成签到 ,获得积分10
3分钟前
Hyp完成签到 ,获得积分10
3分钟前
岳凯完成签到 ,获得积分10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Karl完成签到,获得积分10
4分钟前
研友_ZbMNPn完成签到,获得积分10
4分钟前
Jerry20184完成签到 ,获得积分10
4分钟前
小二郎应助张朔采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789082
求助须知:如何正确求助?哪些是违规求助? 5715479
关于积分的说明 15474168
捐赠科研通 4916996
什么是DOI,文献DOI怎么找? 2646729
邀请新用户注册赠送积分活动 1594380
关于科研通互助平台的介绍 1548838