Transonic Aerodynamic–Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

跨音速 气动弹性 空气动力学 非线性系统 翼型 空气动力 计算机科学 控制理论(社会学) 工程类 航空航天工程 物理 控制(管理) 量子力学 人工智能
作者
Xiangjie Yao,Rui Huang,Haiyan Hu,Haojie Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:62 (3): 1159-1178 被引量:7
标识
DOI:10.2514/1.j063360
摘要

Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic–structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid–structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助why11starry采纳,获得10
1秒前
鲜艳的遥完成签到 ,获得积分20
1秒前
科研小白发布了新的文献求助10
1秒前
fighting完成签到,获得积分10
2秒前
椰子发布了新的文献求助10
2秒前
3秒前
5秒前
ADC大王完成签到,获得积分10
6秒前
6秒前
无极微光应助天真的冬寒采纳,获得20
7秒前
一个橡果发布了新的文献求助10
9秒前
LIO发布了新的文献求助10
11秒前
鲤鱼越越发布了新的文献求助10
11秒前
宋元明清发布了新的文献求助10
12秒前
零一发布了新的文献求助10
13秒前
FashionBoy应助chen采纳,获得10
16秒前
zzx发布了新的文献求助10
16秒前
17秒前
jinhongyangkim完成签到,获得积分20
18秒前
传奇3应助无奈敏采纳,获得10
18秒前
传奇3应助zzx采纳,获得10
19秒前
Owen应助Vanessa采纳,获得10
20秒前
鲤鱼越越完成签到,获得积分10
21秒前
一叶知秋完成签到,获得积分10
22秒前
22秒前
小二郎应助jinhongyangkim采纳,获得10
22秒前
23秒前
鲜艳的遥发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
27秒前
sunmcxz发布了新的文献求助10
28秒前
29秒前
29秒前
白河愁完成签到,获得积分10
29秒前
limuzi827发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
33秒前
terryok发布了新的文献求助10
34秒前
Vanessa发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337