Transonic Aerodynamic–Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

跨音速 气动弹性 空气动力学 非线性系统 翼型 空气动力 计算机科学 控制理论(社会学) 工程类 航空航天工程 物理 量子力学 人工智能 控制(管理)
作者
Xiangjie Yao,Rui Huang,Haiyan Hu,Haojie Liu
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:62 (3): 1159-1178 被引量:2
标识
DOI:10.2514/1.j063360
摘要

Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic–structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid–structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风不竞发布了新的文献求助10
1秒前
1秒前
YangHub应助快乐的鱼采纳,获得10
1秒前
2秒前
2秒前
sundaytan完成签到,获得积分10
2秒前
霍楠完成签到,获得积分10
2秒前
刻苦的惜梦完成签到,获得积分10
3秒前
123669应助科研通管家采纳,获得10
3秒前
Wri发布了新的文献求助10
3秒前
3秒前
CodeCraft应助ranqi采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
明理囧完成签到 ,获得积分10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
缥缈芷珍完成签到,获得积分10
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
lucky完成签到 ,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
1sunpf完成签到,获得积分10
4秒前
吴鹏完成签到,获得积分10
4秒前
林小夫完成签到,获得积分10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Zpk完成签到,获得积分10
4秒前
fosca完成签到,获得积分10
5秒前
spf完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
小蘑菇应助满增明采纳,获得10
5秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899272
关于积分的说明 8304996
捐赠科研通 2568569
什么是DOI,文献DOI怎么找? 1395172
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630727