LI-FPN: Depression and Anxiety Detection from Learning and Imitation

计算机科学 焦虑 杠杆(统计) 人工智能 特征提取 特征(语言学) 萧条(经济学) 机器学习 心理学 精神科 语言学 哲学 宏观经济学 经济
作者
LI Xing-yun,Lu Lin,Xinyu Yi,Hao Wang,Yunshao Zheng,Y. H. Yu,Qingxiang Wang
标识
DOI:10.1109/bibm58861.2023.10385591
摘要

With the rise in societal pressures, depression and anxiety have increasingly become prominent mental health conditions impacting people’s lives. To enhance the efficacy of automatic detection for these disorders, we have developed an experimental framework called the Voluntary Facial Expression Mimicry(VFEM). This framework led to the creation of the VFEM Dataset, which supports related research endeavors. Subsequently, we introduce the LI-FPN designed specifically for the automatic identification of depression and anxiety disorders. The LI-FPN comprises two core components: the Learning and Imitation Module(LIM) and the Spatio-temporal Feature Pyramid Network(STFPN). Within the LIM, we leverage sequence features to facilitate comprehensive feature extraction through learning and imitation steps. The STFPN is designed to focus on outliers in multi-scale features for further screening. Compared with traditional attention methods, LI-FPN is more suitable for processing sequence data features and small sample datasets. Upon training using the VFEM Dataset, the LI-FPN achieves impressive accuracies: 0.850 for depression detection, 0.835 for anxiety detection, and 0.786 for co-occurrence detection of depression and anxiety. Meanwhile, LI-FPN also achieves SOAT results on AVEC2014 dataset. The source code for LI-FPN is accessible at https://github.com/muzixingyun/LI-FPN

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Owen应助kirisaki采纳,获得10
1秒前
sakyadamo发布了新的文献求助10
1秒前
LYC发布了新的文献求助10
1秒前
18726094714发布了新的文献求助10
1秒前
三土应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得30
3秒前
3秒前
彩色元发布了新的文献求助10
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
lilili应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得30
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
sasa发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049