亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A3 Receptor

同源建模 化学 热力学 分子动力学 G蛋白偶联受体 动能 同源(生物学) 计算化学 物理 受体 氨基酸 生物化学 量子力学
作者
Margarita Stampelou,Graham Ladds,Antonios Kolocouris
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:128 (4): 914-936 被引量:2
标识
DOI:10.1021/acs.jpcb.3c05986
摘要

A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol–1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol–1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MaoTing完成签到,获得积分10
9秒前
3080完成签到 ,获得积分10
11秒前
38秒前
44秒前
乐乐应助杏子尽欢冰采纳,获得10
53秒前
andrele完成签到,获得积分10
55秒前
hhhhhh完成签到,获得积分10
1分钟前
fdwang完成签到 ,获得积分10
1分钟前
hhhhhh发布了新的文献求助30
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
Ricardo完成签到 ,获得积分10
2分钟前
无极微光应助mmm842273943采纳,获得20
2分钟前
安详的从筠完成签到,获得积分10
2分钟前
Dr_思念完成签到,获得积分10
2分钟前
zhong完成签到 ,获得积分10
2分钟前
2分钟前
调皮醉波完成签到 ,获得积分10
2分钟前
Sherrry发布了新的文献求助10
2分钟前
盛夏如花发布了新的文献求助10
2分钟前
2分钟前
笑笑发布了新的文献求助10
2分钟前
打打应助H_W采纳,获得10
2分钟前
努力的淼淼完成签到 ,获得积分10
2分钟前
应寒年完成签到,获得积分10
2分钟前
3分钟前
难道我是西谷西完成签到,获得积分10
3分钟前
3分钟前
FU发布了新的文献求助10
3分钟前
羊羊吃芋圆完成签到,获得积分10
3分钟前
慕青应助张本丁采纳,获得10
3分钟前
笑笑完成签到,获得积分10
3分钟前
3分钟前
张本丁发布了新的文献求助10
3分钟前
张本丁完成签到,获得积分10
3分钟前
3分钟前
qingcahng发布了新的文献求助10
3分钟前
RJ发布了新的文献求助10
3分钟前
略略略完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657911
求助须知:如何正确求助?哪些是违规求助? 4814204
关于积分的说明 15080608
捐赠科研通 4816172
什么是DOI,文献DOI怎么找? 2577173
邀请新用户注册赠送积分活动 1532199
关于科研通互助平台的介绍 1490727