Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A3 Receptor

同源建模 化学 热力学 分子动力学 G蛋白偶联受体 动能 同源(生物学) 计算化学 物理 受体 氨基酸 生物化学 量子力学
作者
Margarita Stampelou,Graham Ladds,Antonios Kolocouris
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:128 (4): 914-936 被引量:2
标识
DOI:10.1021/acs.jpcb.3c05986
摘要

A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol–1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol–1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助饕餮1235采纳,获得10
刚刚
小蘑菇应助CC采纳,获得10
1秒前
白白完成签到,获得积分10
1秒前
1秒前
1秒前
苏苏完成签到,获得积分10
2秒前
2秒前
wu完成签到,获得积分10
2秒前
2秒前
3秒前
MADKAI发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助111采纳,获得10
4秒前
Accept应助wintercyan采纳,获得20
4秒前
哲999完成签到,获得积分10
4秒前
Mian完成签到,获得积分10
4秒前
5秒前
5秒前
于嗣濠完成签到 ,获得积分10
5秒前
36456657应助CC采纳,获得10
5秒前
优雅山柏发布了新的文献求助10
6秒前
Jacky完成签到,获得积分10
6秒前
脑洞疼应助无情的白桃采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
7秒前
7秒前
zoko发布了新的文献求助10
7秒前
7秒前
曾经的臻发布了新的文献求助10
7秒前
华仔应助S1mple_gentleman采纳,获得10
7秒前
科研通AI5应助CC采纳,获得10
7秒前
7秒前
8秒前
8秒前
张静静完成签到,获得积分10
9秒前
9秒前
震666发布了新的文献求助30
9秒前
MADKAI发布了新的文献求助10
9秒前
9秒前
117发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740