Expert Recommendation Method for Fault Maintenance Based On Industrial Manufacturing Knowledge

计算机科学 专家系统 断层(地质) 制造工程 可靠性工程 工程类 人工智能 地震学 地质学
作者
Jiacheng Fu,Jin Tian,Jiacheng Xu,Zhijun Fang
标识
DOI:10.1109/icdmw60847.2023.00025
摘要

In the industrial manufacturing process, equipment failure problems occur frequently and will have a negative impact on productivity if not resolved on time. Therefore, finding experts who can quickly deal with failure problems is a crucial task. To address this challenge, this research combines the task of recommending maintenance experts for industrial fault problems with a recommendation algorithm based on knowledge graph (KG), intending to meet the need for maintenance expert recommendations in the industry. Existing KG-based recommendation algorithms tend to ignore the association between the current hop triplet set, the initial seed and the previous hop triplet set in the knowledge propagation process. In addition, when constructing representations of experts and fault problems, existing methods also do not sufficiently distinguish the preference difference features that exist between them, resulting in inaccurate representations of the constructed features. The model Collaborative Prospective Knowledge-aware Attentive Network (CPKAN), which is based on a heterogeneous propagation strategy and uses the attention module to control the representation of each hop triplet set, is proposed in this paper as a solution to these issues. This model improves the association between the current hop triplet set, the initial seed, and the previous hop triplet set. Meanwhile, it adjusts the preference difference features between experts and fault problems separately to generate more accurate embedding representations of experts and fault problems, which serve as the basis for the subsequent expert recommendation tasks. Results from the experiment demonstrate that CPKAN outperforms the current state-of-the-art model in our dataset in terms of AUC and F1 performance by 1.03% and 4.89%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HeP完成签到,获得积分10
刚刚
heyan完成签到,获得积分10
1秒前
3秒前
orixero应助ineffable采纳,获得10
4秒前
4秒前
gyh发布了新的文献求助10
4秒前
6秒前
Hello应助小波采纳,获得30
7秒前
7秒前
万能图书馆应助123566采纳,获得10
10秒前
wwwww发布了新的文献求助10
10秒前
16秒前
chy完成签到,获得积分20
16秒前
无限白易应助跑山猪采纳,获得10
16秒前
凶狠的绿兰完成签到,获得积分10
17秒前
helio发布了新的文献求助20
17秒前
19秒前
传奇3应助清脆的落雁采纳,获得10
20秒前
东方高靖完成签到,获得积分20
22秒前
22秒前
梅花笑发布了新的文献求助10
23秒前
SYLH应助amanda采纳,获得10
23秒前
qx发布了新的文献求助10
24秒前
D1fficulty完成签到,获得积分10
25秒前
27秒前
跳跃尔琴发布了新的文献求助10
27秒前
李健应助无心的天思采纳,获得30
29秒前
田様应助涵泽采纳,获得10
30秒前
姜忆霜完成签到 ,获得积分10
31秒前
hhh发布了新的文献求助10
31秒前
ycool发布了新的文献求助10
32秒前
小蘑菇应助arui采纳,获得10
33秒前
zs完成签到,获得积分10
35秒前
35秒前
amanda完成签到,获得积分10
38秒前
pcx完成签到,获得积分10
38秒前
38秒前
一帆风顺发布了新的文献求助20
39秒前
marvin完成签到,获得积分10
40秒前
FashionBoy应助激情的凌青采纳,获得10
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841982
求助须知:如何正确求助?哪些是违规求助? 3384027
关于积分的说明 10532322
捐赠科研通 3104386
什么是DOI,文献DOI怎么找? 1709573
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878