已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Expert Recommendation Method for Fault Maintenance Based On Industrial Manufacturing Knowledge

计算机科学 专家系统 断层(地质) 制造工程 可靠性工程 工程类 人工智能 地震学 地质学
作者
Jiacheng Fu,Jin Tian,Jiacheng Xu,Zhijun Fang
标识
DOI:10.1109/icdmw60847.2023.00025
摘要

In the industrial manufacturing process, equipment failure problems occur frequently and will have a negative impact on productivity if not resolved on time. Therefore, finding experts who can quickly deal with failure problems is a crucial task. To address this challenge, this research combines the task of recommending maintenance experts for industrial fault problems with a recommendation algorithm based on knowledge graph (KG), intending to meet the need for maintenance expert recommendations in the industry. Existing KG-based recommendation algorithms tend to ignore the association between the current hop triplet set, the initial seed and the previous hop triplet set in the knowledge propagation process. In addition, when constructing representations of experts and fault problems, existing methods also do not sufficiently distinguish the preference difference features that exist between them, resulting in inaccurate representations of the constructed features. The model Collaborative Prospective Knowledge-aware Attentive Network (CPKAN), which is based on a heterogeneous propagation strategy and uses the attention module to control the representation of each hop triplet set, is proposed in this paper as a solution to these issues. This model improves the association between the current hop triplet set, the initial seed, and the previous hop triplet set. Meanwhile, it adjusts the preference difference features between experts and fault problems separately to generate more accurate embedding representations of experts and fault problems, which serve as the basis for the subsequent expert recommendation tasks. Results from the experiment demonstrate that CPKAN outperforms the current state-of-the-art model in our dataset in terms of AUC and F1 performance by 1.03% and 4.89%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzu发布了新的文献求助20
1秒前
斯文金鑫发布了新的文献求助10
2秒前
吴妙竹hh完成签到 ,获得积分10
2秒前
yang完成签到 ,获得积分10
2秒前
洛神完成签到 ,获得积分10
5秒前
黑巧的融化完成签到 ,获得积分10
6秒前
乐乐乐乐乐乐应助lyyyy采纳,获得30
7秒前
DW完成签到,获得积分10
10秒前
xyyyy完成签到 ,获得积分10
12秒前
12秒前
Pauline完成签到 ,获得积分10
12秒前
yzthk完成签到 ,获得积分10
13秒前
xiangwang完成签到 ,获得积分10
14秒前
李健应助东方天奇采纳,获得10
14秒前
14秒前
lyyyy完成签到,获得积分10
15秒前
研友_ZG4ml8完成签到 ,获得积分10
15秒前
537完成签到,获得积分10
15秒前
完美世界应助农大彭于晏采纳,获得10
16秒前
18秒前
吕lvlvlvlvlv完成签到 ,获得积分10
19秒前
骆十八完成签到,获得积分10
20秒前
边曦完成签到 ,获得积分10
20秒前
gulugulu发布了新的文献求助10
20秒前
超级小熊猫完成签到 ,获得积分10
21秒前
流沙无言完成签到 ,获得积分10
22秒前
老金金发布了新的文献求助10
23秒前
1485155145完成签到,获得积分20
24秒前
六六完成签到 ,获得积分10
24秒前
27秒前
gulugulu完成签到,获得积分10
28秒前
28秒前
29秒前
wr781586完成签到 ,获得积分10
29秒前
枫枫829完成签到 ,获得积分10
29秒前
CC发布了新的文献求助10
31秒前
内向的火车完成签到 ,获得积分10
33秒前
apollo3232完成签到 ,获得积分10
34秒前
34秒前
BYN完成签到 ,获得积分10
35秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344039
求助须知:如何正确求助?哪些是违规求助? 2971087
关于积分的说明 8646389
捐赠科研通 2651223
什么是DOI,文献DOI怎么找? 1451691
科研通“疑难数据库(出版商)”最低求助积分说明 672237
邀请新用户注册赠送积分活动 661776