A Novel Quality Monitoring Approach Based on Multigranularity Spatiotemporal Attentive Representation Learning During Climbing GTAW

计算机科学 质量(理念) 代表(政治) 人工智能 攀登 爬山 机器学习 工程类 哲学 结构工程 认识论 政治 政治学 法学
作者
Yuxiang Hong,Mingxuan Yang,Ruiling Yuan,Dong Du,Baohua Chang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 8218-8228 被引量:2
标识
DOI:10.1109/tii.2024.3369235
摘要

Reliable welding quality monitoring (WQM) is a long-standing challenge for climbing gas tungsten arc welding (GTAW) due to the inherent instability and complexity of the weld pool during upward welding, especially for the fabrication of large-scale structural components with medium-thick and thick aluminum plates. This article presents a novel WQM approach based on multigranularity spatiotemporal attentive representation learning, aiming to accurately characterize molten pool state and detect welding defects in real time. A passive vision sensing system is constructed to monitor the climbing GTAW process. A long-term dynamic information-enhanced multigranularity spatiotemporal attentive representation learning network is proposed. The network adopts a feature-level image fusion strategy and multigranularity attention mechanism to simultaneously aggregate discriminative information at different semantic levels on the temporal and spatial dimensions from a global view, while utilizing a bilateral branch structure to alleviate class imbalance in the data. Moreover, long-term dynamic information is mined from the molten pool time series images through motion edge history images. Experimental results show that the proposed approach has a remarkable classification performance and robustness compared with the typical comparison models even with class imbalance and noisy training data. This approach offers a promising new solution for WQM and is expected to be utilized to provide real-time feedback in a closed-loop quality control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果瑞宁完成签到,获得积分10
刚刚
1秒前
机智小虾米完成签到,获得积分20
1秒前
goldenfleece完成签到,获得积分10
2秒前
科研通AI2S应助学者采纳,获得10
2秒前
小杨完成签到,获得积分10
3秒前
sutharsons应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Eric_Lee2000应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
王子完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
6秒前
诚心的大碗应助明理念桃采纳,获得20
6秒前
7秒前
meng完成签到,获得积分10
7秒前
学者完成签到,获得积分10
7秒前
英俊的铭应助愉快盼曼采纳,获得10
8秒前
8秒前
小媛完成签到 ,获得积分10
9秒前
学术小白完成签到,获得积分20
9秒前
赘婿应助xiaomeng采纳,获得10
9秒前
Khr1stINK发布了新的文献求助10
9秒前
清新的苑博完成签到,获得积分10
9秒前
10秒前
果果瑞宁发布了新的文献求助10
11秒前
阿美发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808