Regular tandem microlens arrays are well described and widely used for beam shaping and homogenization. Applying absorbing slides between the entrance and exit lenslets and channel-wise variation of the slides' shape and size allows flexible control of the beam's intensity profile and silhouette. The downside of absorbing slides is a significant transmission loss, limiting the achievable level of system efficiency. This work describes a more efficient method for micro-optical beam shaping with maskless irregular microlens arrays (iMLA). The iMLAs are completely absorption-free elements, enhancing the overall efficiency of the optical system. We describe basic design rules for iMLAs, including stray-light suppression, tolerancing, and modeling under consideration of manufacturing imperfections.