柠檬酸循环
祖细胞
生物
干细胞
细胞生物学
氧气张力
谷氨酰胺
新陈代谢
缺氧(环境)
生物化学
丙酮酸脱氢酶复合物
化学
氨基酸
氧气
酶
有机化学
作者
Shauni Loopmans,Guillaume Tournaire,Ingrid Stockmans,Steve Stegen,Geert Carmeliet
摘要
Abstract Skeletal stem and progenitor cells (SSPCs) are crucial for bone development, homeostasis, and repair. SSPCs are considered to reside in a rather hypoxic niche in the bone, but distinct SSPC niches have been described in different skeletal regions, and they likely differ in oxygen and nutrient availability. Currently it remains unknown whether the different SSPC sources have a comparable metabolic profile and respond in a similar manner to hypoxia. In this study, we show that cell proliferation of all SSPCs was increased in hypoxia, suggesting that SSPCs can indeed function in a hypoxic niche in vivo. In addition, low oxygen tension increased glucose consumption and lactate production, but affected pyruvate metabolism cell-specifically. Hypoxia decreased tricarboxylic acid (TCA) cycle anaplerosis and altered glucose entry into the TCA cycle from pyruvate dehydrogenase to pyruvate carboxylase and/or malic enzyme. Finally, a switch from glutamine oxidation to reductive carboxylation was observed in hypoxia, as well as cell-specific adaptations in the metabolism of other amino acids. Collectively, our findings show that SSPCs from different skeletal locations proliferate adequately in hypoxia by rewiring glucose and amino acid metabolism in a cell-specific manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI