Multi-granularity Knowledge Sharing in Low-resource Neural Machine Translation

粒度 计算机科学 机器翻译 资源(消歧) 翻译(生物学) 人工智能 知识共享 知识管理 化学 计算机网络 程序设计语言 生物化学 信使核糖核酸 基因
作者
Chenggang Mi,Shaoliang Xie,Yi Fan
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:23 (2): 1-19
标识
DOI:10.1145/3639930
摘要

As the rapid development of deep learning methods, neural machine translation (NMT) has attracted more and more attention in recent years. However, lack of bilingual resources decreases the performance of the low-resource NMT model seriously. To overcome this problem, several studies put their efforts on knowledge transfer from high-resource language pairs to low-resource language pairs. However, these methods usually focus on one single granularity of language and the parameter sharing among different granularities in NMT is not well studied. In this article, we propose to improve the parameter sharing in low-resource NMT by introducing multi-granularity knowledge such as word, phrase and sentence. This knowledge can be monolingual and bilingual. We build the knowledge sharing model for low-resource NMT based on a multi-task learning framework, three auxiliary tasks such as syntax parsing, cross-lingual named entity recognition, and natural language generation are selected for the low-resource NMT. Experimental results show that the proposed method consistently outperforms six strong baseline systems on several low-resource language pairs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
沐沐完成签到,获得积分10
1秒前
充电宝应助bofu采纳,获得10
2秒前
脑洞疼应助FUN采纳,获得10
5秒前
6秒前
沐沐发布了新的文献求助30
6秒前
malistm发布了新的文献求助10
7秒前
彭佳丽发布了新的文献求助10
7秒前
yanhuazi完成签到,获得积分10
8秒前
39完成签到,获得积分10
8秒前
小蘑菇应助把握当下采纳,获得10
8秒前
陈欣怡完成签到,获得积分20
8秒前
连天与发布了新的文献求助10
9秒前
大林发布了新的文献求助30
9秒前
鹏826发布了新的文献求助10
11秒前
星辰大海应助bofu采纳,获得10
12秒前
13秒前
14秒前
Lucas应助彭佳丽采纳,获得10
14秒前
p_kunnnn完成签到,获得积分10
15秒前
小云飘飘发布了新的文献求助10
18秒前
烟花应助有一个盆采纳,获得10
18秒前
Chloe955完成签到,获得积分10
18秒前
毁灭世界发布了新的文献求助10
20秒前
20秒前
zwd完成签到,获得积分10
21秒前
大模型应助Nefelibate采纳,获得10
21秒前
bkagyin应助bofu采纳,获得10
22秒前
22秒前
22秒前
22秒前
连天与完成签到,获得积分10
23秒前
24秒前
Jason-1024完成签到,获得积分10
26秒前
飘逸续完成签到,获得积分10
27秒前
sonny发布了新的文献求助10
27秒前
小云飘飘完成签到,获得积分10
27秒前
28秒前
Dr_Wang完成签到,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451