SAR Target Incremental Recognition Based on Features With Strong Separability

计算机科学 人工智能 模式识别(心理学) 边界判定 卷积神经网络 遗忘 分类器(UML) 机器学习 聚类分析 渐进式学习 深度学习 人工神经网络 自动目标识别 合成孔径雷达 语言学 哲学
作者
Fei Gao,Lingzhe Kong,Rongling Lang,Jinping Sun,Jun Wang,Amir Hussain,Huiyu Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:11
标识
DOI:10.1109/tgrs.2024.3351636
摘要

With the rapid development of deep learning technology, many synthetic aperture radar (SAR) target recognition algorithms based on convolutional neural networks have achieved exceptional performance on various datasets. However, conventional neural networks are repeatedly iterated on a fixed dataset until convergence, and once they learn new tasks, a large amount of previously learned knowledge is forgotten, leading to a significant decline in performance on old tasks. This article presents an incremental learning method based on strong separability features (SSF-IL) to address the model's forgetting of previously learned knowledge. The SSF-IL employs both intraclass and interclass scatter to compute the feature separability loss, in order to enhance the linear separability of features during incremental learning. In the process of learning new classes, an intraclass clustering loss is proposed to replace the conventional knowledge distillation. This loss function constrains the old class features to cluster around the saved class centers, maintaining the separability among the old class features. Finally, a classifier bias correction method based on boundary features is designed to reinforce the classifier's decision boundary and reduce classification errors. SAR target incremental recognition experiments are conducted on the MSTAR dataset, and the results are compared with several existing incremental learning algorithms to demonstrate the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xing发布了新的文献求助10
1秒前
3秒前
丘比特应助俭朴的滑板采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
Dada应助科研通管家采纳,获得30
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
Ava应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助清新的万天采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
menghao完成签到,获得积分10
7秒前
7秒前
甄的艾你发布了新的文献求助10
7秒前
quhayley应助AnJaShua采纳,获得20
8秒前
8秒前
粒子耶完成签到,获得积分10
8秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152