计算机科学
人工智能
模式识别(心理学)
边界判定
卷积神经网络
遗忘
分类器(UML)
机器学习
聚类分析
渐进式学习
深度学习
人工神经网络
自动目标识别
合成孔径雷达
哲学
语言学
作者
Fei Gao,Lingzhe Kong,Rongling Lang,Jinping Sun,Jun Wang,Amir Hussain,Huiyu Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:62: 1-13
被引量:11
标识
DOI:10.1109/tgrs.2024.3351636
摘要
With the rapid development of deep learning technology, many synthetic aperture radar (SAR) target recognition algorithms based on convolutional neural networks have achieved exceptional performance on various datasets. However, conventional neural networks are repeatedly iterated on a fixed dataset until convergence, and once they learn new tasks, a large amount of previously learned knowledge is forgotten, leading to a significant decline in performance on old tasks. This article presents an incremental learning method based on strong separability features (SSF-IL) to address the model's forgetting of previously learned knowledge. The SSF-IL employs both intraclass and interclass scatter to compute the feature separability loss, in order to enhance the linear separability of features during incremental learning. In the process of learning new classes, an intraclass clustering loss is proposed to replace the conventional knowledge distillation. This loss function constrains the old class features to cluster around the saved class centers, maintaining the separability among the old class features. Finally, a classifier bias correction method based on boundary features is designed to reinforce the classifier's decision boundary and reduce classification errors. SAR target incremental recognition experiments are conducted on the MSTAR dataset, and the results are compared with several existing incremental learning algorithms to demonstrate the effectiveness of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI