Study on Rapid Prediction of Low Concentration O-Nitrotoluene in Mononitrotoluene Mixture by Near Infrared Spectroscopy Combined with Novel Calibration Strategies

化学计量学 校准 内容(测量理论) 近红外光谱 分析化学(期刊) 均方误差 标准差 决定系数 偏最小二乘回归 化学 数学 色谱法 统计 数学分析 物理 量子力学
作者
Xujie Huo,Pu Chen,Jingyan Li,Yupeng Xu,Dan Liu,Chu Xiaoli
标识
DOI:10.2139/ssrn.4693011
摘要

The determination of the o-nitrotoluene (o-MNT) content in separation process of mononitrotoluene (MNT) is of interest, since it affects the purity of m-nitrotoluene (m-MNT) and p-nitrotoluene (p-MNT). However, the analytical techniques traditionally used for its content determination are tedious and time consuming. Therefore, we explored the analysis of spectral data based on near-infrared spectroscopy (NIRS) and chemometrics, and extracted the spectral features of the o-MNT based on the interval selection algorithm. The calibration models for the o-MNT content based on samples with different concentration ranges were developed by PLS. Among them, the calibration model based on samples with 0.01~0.5% concentration range has the best prediction performance. The calibration model was established with the determination coefficient of prediction (R2) of 0.959, root mean squared error of prediction (RMSEP) of 0.011 and ratio of standard deviation of the calibration set to standard error of prediction (RPD) of 4.899 for o-MNT. It is sufficient to meet the fast detection needs of the o-MNT content for process control in chemical industry. In addition, in order to reduce the demand of the model on samples and corresponding reference values, we explored the virtual sample generation method based on background difference compensation. The calibration model based on virtual samples was established with R2 of 0.74, RMSEP of 0.028 and RPD of 1.951. This study shows that the method based on NIRS and chemometrics has strong prediction performance for o-MNT in separation process of MNT, which is a guideline for controlling product purity of m-MNT and p-MNT. And the virtual sample generation method proposed in this study can significantly reduce the sample demand of calibration model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao完成签到 ,获得积分10
1秒前
森林冰火人完成签到,获得积分10
2秒前
juiceeeee完成签到,获得积分10
3秒前
轻松不二发布了新的文献求助10
6秒前
烟花应助超帅的又槐采纳,获得10
6秒前
fish应助健忘难敌采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
Yolo完成签到 ,获得积分10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
10秒前
13秒前
14秒前
轻松不二完成签到,获得积分10
14秒前
14秒前
Lyubb完成签到,获得积分10
15秒前
16秒前
里lilili应助超帅的又槐采纳,获得10
16秒前
舒适亦凝发布了新的文献求助10
17秒前
18秒前
华仔应助zhanks采纳,获得10
19秒前
19秒前
66666发布了新的文献求助10
20秒前
20秒前
shi发布了新的文献求助10
20秒前
舒桐发布了新的文献求助10
21秒前
22秒前
领导范儿应助nanonamo采纳,获得10
23秒前
shl发布了新的文献求助10
24秒前
科研通AI2S应助Hbobo采纳,获得10
25秒前
哈哈哈哈发布了新的文献求助10
26秒前
舒适亦凝完成签到,获得积分10
27秒前
66666完成签到,获得积分20
27秒前
飞蝴蝶完成签到,获得积分10
28秒前
llllll发布了新的文献求助10
29秒前
29秒前
苗条元霜发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055398
求助须知:如何正确求助?哪些是违规求助? 2712227
关于积分的说明 7430116
捐赠科研通 2357028
什么是DOI,文献DOI怎么找? 1248483
科研通“疑难数据库(出版商)”最低求助积分说明 606737
版权声明 596093