Maturity Recognition and Fruit Counting for Sweet Peppers in Greenhouses Using Deep Learning Neural Networks

胡椒粉 温室 橙色(颜色) 人工智能 成熟度(心理) 园艺 计算机科学 数学 生物 心理学 发展心理学
作者
Luis David Viveros Escamilla,Alfonso Gómez-Espinosa,Jesús Arturo Escobedo Cabello,José Antonio Cantoral-Ceballos
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 331-331 被引量:3
标识
DOI:10.3390/agriculture14030331
摘要

This study presents an approach to address the challenges of recognizing the maturity stage and counting sweet peppers of varying colors (green, yellow, orange, and red) within greenhouse environments. The methodology leverages the YOLOv5 model for real-time object detection, classification, and localization, coupled with the DeepSORT algorithm for efficient tracking. The system was successfully implemented to monitor sweet pepper production, and some challenges related to this environment, namely occlusions and the presence of leaves and branches, were effectively overcome. We evaluated our algorithm using real-world data collected in a sweet pepper greenhouse. A dataset comprising 1863 images was meticulously compiled to enhance the study, incorporating diverse sweet pepper varieties and maturity levels. Additionally, the study emphasized the role of confidence levels in object recognition, achieving a confidence level of 0.973. Furthermore, the DeepSORT algorithm was successfully applied for counting sweet peppers, demonstrating an accuracy level of 85.7% in two simulated environments under challenging conditions, such as varied lighting and inaccuracies in maturity level assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
KAKIN发布了新的文献求助30
2秒前
2秒前
Qiao应助小远采纳,获得10
3秒前
3秒前
高大含玉关注了科研通微信公众号
3秒前
烟花应助个性的汲采纳,获得10
4秒前
淀粉肠发布了新的文献求助10
5秒前
非鱼完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
tubaba8848完成签到,获得积分10
7秒前
dypdyp应助子苇采纳,获得10
8秒前
汉堡包应助干净思远采纳,获得10
8秒前
zhu完成签到,获得积分10
8秒前
8秒前
XHH1994发布了新的文献求助10
9秒前
安安的屁屁完成签到 ,获得积分20
10秒前
维特完成签到,获得积分10
12秒前
12秒前
和谐百川发布了新的文献求助10
12秒前
13秒前
14秒前
XHH1994完成签到,获得积分10
14秒前
孔孔完成签到,获得积分10
15秒前
领导范儿应助KAKIN采纳,获得10
15秒前
16秒前
16秒前
17秒前
houfei发布了新的文献求助10
18秒前
lll完成签到,获得积分10
18秒前
helinahs发布了新的文献求助10
20秒前
CodeCraft应助sky采纳,获得10
20秒前
婷婷发布了新的文献求助10
20秒前
LBY发布了新的文献求助10
22秒前
自觉的向日葵完成签到,获得积分10
24秒前
26秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382