MRNDR: Multihead Attention-Based Recommendation Network for Drug Repurposing

重新调整用途 计算机科学 药物重新定位 集合(抽象数据类型) 人工智能 机器学习 备品备件 一般化 药品 数据挖掘 药理学 医学 生态学 生物 数学分析 数学 营销 业务 程序设计语言
作者
Xin Feng,Zhansen Ma,Cuinan Yu,Ruihao Xin
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2654-2669 被引量:3
标识
DOI:10.1021/acs.jcim.3c01726
摘要

As is well-known, the process of developing new drugs is extremely expensive, whereas drug repurposing represents a promising approach to augment the efficiency of new drug development. While this method can indeed spare us from expensive drug toxicity and safety experiments, it still demands a substantial amount of time to carry out precise efficacy experiments for specific diseases, thereby consuming a significant quantity of resources. Therefore, if we can prescreen potential other indications for selected drugs, it could result in substantial cost savings. In light of this, this paper introduces a drug repurposing recommendation model called MRNDR, which stands for Multi-head attention-based Recommendation Network for Drug Repurposing. This model serves as a prediction tool for drug-disease relationships, leveraging the multihead self-attention mechanism that demonstrates robust generalization capabilities. These capabilities stem not only from our extensive million-level training data set, BioRE (Biology Recommended Entity data), but also from the utilization of the WRDS (Weighted Representation Distance Score) algorithm proposed by us. The MRNDR model has achieved new state-of-the-art results on the GP-KG public data set, with an MRR (Mean Reciprocal Rank) score of 0.308 and a Hits@10 score of 0.628. This represents significant improvements of 4.7% (MRR) and 18.1% (Hits@10) over the current best-performing models. Additionally, to further validate the practical utility of the model, we examined results recommended by MRNDR that were not present in the training data set. Some of these recommendations have undergone clinical trials, as evidenced by their presence on ClinicalTrials.gov and the China Clinical Trials Center, indirectly confirming the applicability of MRNDR. The MRNDR model can predict the reusability of candidate drugs, reducing the need for manual expert assessments and enabling efficient drug repurposing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Yuying完成签到 ,获得积分10
2秒前
Rita发布了新的文献求助10
2秒前
wmemrnrnr发布了新的文献求助30
3秒前
5秒前
wy.he应助野猪亨利28采纳,获得30
5秒前
NexusExplorer应助露露采纳,获得10
6秒前
6秒前
6秒前
暴富小羊发布了新的文献求助10
7秒前
毛毛完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
啦啦啦完成签到,获得积分10
15秒前
16秒前
xinxin发布了新的文献求助10
16秒前
17秒前
两面性发布了新的文献求助10
19秒前
emm完成签到,获得积分10
19秒前
啦啦啦发布了新的文献求助10
20秒前
lxj发布了新的文献求助10
22秒前
侯mm发布了新的文献求助10
22秒前
小杨完成签到,获得积分10
22秒前
在水一方应助坚强的严青采纳,获得10
23秒前
上官若男应助凡帝采纳,获得10
23秒前
JamesPei应助lize5493采纳,获得30
24秒前
24秒前
开心市民发布了新的文献求助10
25秒前
yang应助xinxin采纳,获得10
25秒前
28秒前
30秒前
故乡的云完成签到,获得积分10
30秒前
懵了完成签到,获得积分10
31秒前
31秒前
zqy发布了新的文献求助10
32秒前
32秒前
33秒前
科研通AI2S应助huhdcid采纳,获得10
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323