铀
纳米技术
生化工程
持续性
环境科学
计算机科学
环境经济学
材料科学
工程类
生态学
生物
经济
冶金
作者
Subiao Liu,You‐Zi Wang,Yan Tang,Shuhui Yu,Jing‐Li Luo
出处
期刊:Small
[Wiley]
日期:2024-01-21
被引量:2
标识
DOI:10.1002/smll.202311130
摘要
Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI