An Efficient Noise Reduction Method for Power Transformer Voiceprint Detection Based on Poly-Phase Filtering and Complex Variational Modal Decomposition

变压器 降噪 工程类 电子工程 计算机科学 声学 电气工程 人工智能 电压 物理
作者
Hualiang Zhou,Lu Lu,Mingwei Shen,Zhantao Su,Yuxuan Huang
出处
期刊:Electronics [MDPI AG]
卷期号:13 (2): 338-338
标识
DOI:10.3390/electronics13020338
摘要

The transformer is a core component in power systems, and its reliable operation is crucial for the safety and stability of the power grid. Transformer faults can be diagnosed early using acoustic signals. However, effective acoustic features are often affected by complex environmental noise, which reduces the accuracy of fault identification. As a solution, this study proposes a poly-phase filtering (PF)-based noise reduction algorithm for complex variational mode decomposition (CVMD) of multiple acoustic sources in power transformers. The algorithm dissects the received signal from the power transformer into subbands, downsizing their sampling rates via PF. Subsequently, it independently targets noise reduction within these subbands, focusing on specific acoustic sources. Leveraging complex signal transformations, we extend the variational mode decomposition (VMD) to mitigate the field of complex signals and utilize the CVMD to reduce the noise of each acoustic source within each subband for every acoustic source. The experimental results reveal that the proposed method effectively separates and denoises the sound signal of transformer operation under the interference of multiple sound sources in the substation. Its powerful noise reduction ability, combined with minimal computational complexity, greatly improves the accuracy of transformer fault identification and the reliability of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助aaa采纳,获得10
1秒前
岑夜南完成签到 ,获得积分10
1秒前
大模型应助是微微采纳,获得10
2秒前
斯文败类应助小滕采纳,获得10
3秒前
孙永胜完成签到,获得积分10
3秒前
Migrol完成签到,获得积分10
5秒前
5秒前
安容天发布了新的文献求助10
6秒前
7秒前
王晓雪完成签到,获得积分10
7秒前
是微微完成签到,获得积分20
7秒前
淡淡菠萝发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
梦初醒处发布了新的文献求助10
10秒前
11秒前
11秒前
Owen应助zhangxr采纳,获得10
12秒前
阿哈完成签到,获得积分10
12秒前
JaneChen发布了新的文献求助10
12秒前
洁净的元龙完成签到,获得积分20
13秒前
开朗从安完成签到 ,获得积分10
13秒前
14秒前
lysun发布了新的文献求助10
15秒前
甜甜芾完成签到,获得积分10
16秒前
阿拉菊发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
18秒前
闻歌发布了新的文献求助10
18秒前
李爱国应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
李健应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194