An Efficient Noise Reduction Method for Power Transformer Voiceprint Detection Based on Poly-Phase Filtering and Complex Variational Modal Decomposition

变压器 降噪 工程类 电子工程 计算机科学 声学 电气工程 人工智能 电压 物理
作者
Hualiang Zhou,Lu Lu,Mingwei Shen,Zhantao Su,Yuxuan Huang
出处
期刊:Electronics [MDPI AG]
卷期号:13 (2): 338-338
标识
DOI:10.3390/electronics13020338
摘要

The transformer is a core component in power systems, and its reliable operation is crucial for the safety and stability of the power grid. Transformer faults can be diagnosed early using acoustic signals. However, effective acoustic features are often affected by complex environmental noise, which reduces the accuracy of fault identification. As a solution, this study proposes a poly-phase filtering (PF)-based noise reduction algorithm for complex variational mode decomposition (CVMD) of multiple acoustic sources in power transformers. The algorithm dissects the received signal from the power transformer into subbands, downsizing their sampling rates via PF. Subsequently, it independently targets noise reduction within these subbands, focusing on specific acoustic sources. Leveraging complex signal transformations, we extend the variational mode decomposition (VMD) to mitigate the field of complex signals and utilize the CVMD to reduce the noise of each acoustic source within each subband for every acoustic source. The experimental results reveal that the proposed method effectively separates and denoises the sound signal of transformer operation under the interference of multiple sound sources in the substation. Its powerful noise reduction ability, combined with minimal computational complexity, greatly improves the accuracy of transformer fault identification and the reliability of the system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyc完成签到,获得积分10
1秒前
华仔应助阳光的未来采纳,获得10
1秒前
1秒前
NexusExplorer应助Pendragon采纳,获得30
1秒前
ZJR完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Lynne发布了新的文献求助10
3秒前
4秒前
斯文败类应助ZHN采纳,获得10
4秒前
Twonej应助辣椒油想躺平采纳,获得30
5秒前
6秒前
shenlan完成签到,获得积分10
6秒前
a502410600发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
爆米花应助wenyliang采纳,获得10
9秒前
wyuan完成签到,获得积分10
10秒前
陈陈陈发布了新的文献求助10
10秒前
徐牛牛完成签到,获得积分10
11秒前
英姑应助明理的凡霜采纳,获得10
11秒前
wang发布了新的文献求助10
11秒前
华仔应助鲜艳的慕晴采纳,获得10
12秒前
大意的雪一完成签到,获得积分10
13秒前
华仔应助七五采纳,获得10
13秒前
领导范儿应助DAISY采纳,获得30
13秒前
14秒前
Lucas应助liya采纳,获得10
14秒前
罗美女应助徐牛牛采纳,获得10
14秒前
15秒前
15秒前
海笑天涯完成签到,获得积分10
15秒前
gonna完成签到,获得积分10
15秒前
16秒前
猪猪侠发布了新的文献求助30
16秒前
LeonPan完成签到,获得积分10
17秒前
18秒前
18秒前
充电宝应助wang采纳,获得10
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105