An Efficient Noise Reduction Method for Power Transformer Voiceprint Detection Based on Poly-Phase Filtering and Complex Variational Modal Decomposition

变压器 降噪 工程类 电子工程 计算机科学 声学 电气工程 人工智能 电压 物理
作者
Hualiang Zhou,Lu Lu,Mingwei Shen,Zhantao Su,Yuxuan Huang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (2): 338-338
标识
DOI:10.3390/electronics13020338
摘要

The transformer is a core component in power systems, and its reliable operation is crucial for the safety and stability of the power grid. Transformer faults can be diagnosed early using acoustic signals. However, effective acoustic features are often affected by complex environmental noise, which reduces the accuracy of fault identification. As a solution, this study proposes a poly-phase filtering (PF)-based noise reduction algorithm for complex variational mode decomposition (CVMD) of multiple acoustic sources in power transformers. The algorithm dissects the received signal from the power transformer into subbands, downsizing their sampling rates via PF. Subsequently, it independently targets noise reduction within these subbands, focusing on specific acoustic sources. Leveraging complex signal transformations, we extend the variational mode decomposition (VMD) to mitigate the field of complex signals and utilize the CVMD to reduce the noise of each acoustic source within each subband for every acoustic source. The experimental results reveal that the proposed method effectively separates and denoises the sound signal of transformer operation under the interference of multiple sound sources in the substation. Its powerful noise reduction ability, combined with minimal computational complexity, greatly improves the accuracy of transformer fault identification and the reliability of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助shi hui采纳,获得10
刚刚
1秒前
DI发布了新的文献求助30
1秒前
菌菌完成签到,获得积分10
1秒前
李健应助唐唐采纳,获得30
1秒前
2秒前
3秒前
3秒前
Charlie发布了新的文献求助50
3秒前
墨丿筠完成签到,获得积分10
3秒前
爱撒娇的长颈鹿完成签到,获得积分10
3秒前
丘比特应助从容飞阳采纳,获得10
3秒前
刘欣发布了新的文献求助10
4秒前
瓜i完成签到,获得积分10
4秒前
5秒前
慌小丧发布了新的文献求助10
5秒前
5秒前
5秒前
DQQ完成签到,获得积分10
5秒前
香蕉觅云应助鸡蛋清abc采纳,获得10
6秒前
万能图书馆应助bodhi采纳,获得10
6秒前
hh完成签到,获得积分10
8秒前
张璟博发布了新的文献求助10
8秒前
庞航应助热心的梦桃采纳,获得10
8秒前
倩Q发布了新的文献求助10
9秒前
June完成签到 ,获得积分10
9秒前
Om完成签到,获得积分10
10秒前
科研通AI5应助Aurora采纳,获得10
10秒前
10秒前
星辰大海应助白居采纳,获得10
11秒前
11秒前
华仔应助jack采纳,获得10
11秒前
wuzhizhongbin完成签到,获得积分10
12秒前
snail01完成签到,获得积分10
12秒前
8R60d8应助刘欣采纳,获得10
12秒前
jing77完成签到 ,获得积分10
13秒前
航sir发布了新的文献求助10
13秒前
十字丝发布了新的文献求助10
13秒前
轻松盼雁完成签到,获得积分10
13秒前
Lucas应助vertin采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105