已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Domain shared features for visual inspection of complex mechanical assemblies based on synthetically generated data

计算机科学 深度学习 点云 人工智能 预处理器 领域(数学分析) 数据预处理 人工神经网络 机器学习 数据处理 云计算 数据库 数学 操作系统 数学分析
作者
Velibor Došljak,Igor Jovančević,Jean‐José Orteu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (03)
标识
DOI:10.1117/1.jei.33.3.031205
摘要

Even though neural network methodologies have been established for a long time, only recently have they achieved exceptional efficacy in practical deployments, predominantly due to improvements in hardware computational capacity and the large amounts of available data for learning. Nonetheless, substantial challenges remain in utilizing deep learning in many domains, mainly because of the lack of large amounts of labeled data that are versatile enough for deep learning models to learn useful information. For instance, in mechanical assembly inspection, annotating data for each type of mechanical part to train a deep learning model can be very labor-intensive. Additionally, it is required to annotate data after each modification of mechanical part specification. Also, the system for inspection is typically not available until the first few samples are built to collect data. This paper proposes a solution for these challenges in case of the visual mechanical assembly inspection by processing point cloud data acquired via a three-dimensional (3D) scanner. To reduce the necessity for manually labeling large amounts of data, we employed synthetically generated data for both training and validation purposes, reserving the real sensor data exclusively for the testing phase. Our approach reduces the need for large amounts of labeled data by using synthetically generated point clouds from computer-aided design models for neural network training. Domain gap is a significant challenge for the usage of synthetically generated data. To reduce the domain gap, we used different preprocessing techniques, as well as a neural network architecture that focuses more on shared features that will not significantly change between synthetically generated data and real data from the 3D sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bopbopbaby完成签到 ,获得积分10
1秒前
酷波er应助凉雨街采纳,获得10
2秒前
11秒前
坦率的丹烟完成签到 ,获得积分10
16秒前
凉雨街发布了新的文献求助10
16秒前
无奈的海燕完成签到 ,获得积分20
18秒前
ET发布了新的文献求助10
19秒前
糟糕的铁锤给清然的求助进行了留言
22秒前
fa完成签到,获得积分10
22秒前
qsby完成签到 ,获得积分10
31秒前
33秒前
大壳完成签到 ,获得积分10
36秒前
花海完成签到 ,获得积分10
46秒前
1分钟前
名侦探柯基完成签到 ,获得积分10
1分钟前
1分钟前
葛怀锐完成签到 ,获得积分10
1分钟前
Maliketh应助科研通管家采纳,获得20
1分钟前
tuanheqi应助科研通管家采纳,获得50
1分钟前
1分钟前
hcmsaobang2001完成签到,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
学术小白完成签到,获得积分10
1分钟前
严冰蝶完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
大方荷花完成签到 ,获得积分10
1分钟前
橙子完成签到 ,获得积分10
1分钟前
1分钟前
pjh完成签到,获得积分10
1分钟前
小太阳完成签到,获得积分10
2分钟前
核桃花生奶兔完成签到 ,获得积分10
2分钟前
pjh发布了新的文献求助10
2分钟前
LOVER完成签到 ,获得积分10
2分钟前
草莓熊1215完成签到 ,获得积分10
2分钟前
爆米花应助pjh采纳,获得10
2分钟前
145546完成签到 ,获得积分10
2分钟前
Krim完成签到 ,获得积分10
2分钟前
123发布了新的文献求助10
2分钟前
高源伯完成签到 ,获得积分10
2分钟前
NexusExplorer应助QQ采纳,获得10
2分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371203
求助须知:如何正确求助?哪些是违规求助? 2989415
关于积分的说明 8735656
捐赠科研通 2672615
什么是DOI,文献DOI怎么找? 1464095
科研通“疑难数据库(出版商)”最低求助积分说明 677394
邀请新用户注册赠送积分活动 668691