亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Multi Pose Human Face Matching System

计算机科学 人工智能 面子(社会学概念) 计算机视觉 人脸检测 姿势 匹配(统计) 旋转(数学) 三维人脸识别 帧(网络) 对象类检测 面部识别系统 模式识别(心理学) 数学 统计 社会学 电信 社会科学
作者
Muhammad Sohail,Ijaz Ali Shoukat,Abd Ullah Khan,Haram Fatima,Mohsin Raza Jafri,Muhammad Azfar Yaqub,Antonio Liotta
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 26046-26061 被引量:4
标识
DOI:10.1109/access.2024.3366451
摘要

Current techniques for multi-pose human face matching yield suboptimal outcomes because of the intricate nature of pose equalization and face rotation. Deep learning models, such as YOLO-V5, etc., that have been proposed to tackle these complexities, suffer from slow frame matching speeds and therefore exhibit low face recognition accuracy. Concerning this, certain literature investigated multi-pose human face detection systems; however, those studies are of elementary level and do not adequately analyze the utility of those systems. To fill this research gap, we propose a real-time face matching algorithm based on YOLO-V5. Our algorithm utilizes multi-pose human patterns and considers various face orientations, including organizational faces and left, right, top, and bottom alignments, to recognize multiple aspects of people. Using face poses, the algorithm identifies face positions in a dataset of images obtained from mixed pattern live streams, and compares faces with a specific piece of the face that has a relatively similar spectrum for matching with a given dataset. Once a match is found, the algorithm displays the face on Google Colab, collected during the learning phase with the Robo-flow key, and tracks it using the YOLO-V5 face monitor. Alignment variations are broken up into different positions, where each type of face is uniquely learned to have its own study demonstrated. This method offers several benefits for identifying and monitoring humans using their labeling tag as a pattern name, including high face-matching accuracy and minimum speed of owing face-to-pose variations. Furthermore, the algorithm addresses the face rotation issue by introducing a mixture of error functions for execution time, accuracy loss, frame-wise failure, and identity loss, attempting to guide the authenticity of the produced image frame. Experimental results confirm effectiveness of the algorithm in terms of improved accuracy and reduced delay in the face-matching paradigm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助邓润杰采纳,获得10
刚刚
8秒前
科研通AI6应助邓润杰采纳,获得10
11秒前
FashionBoy应助傻傻的修洁采纳,获得10
13秒前
情怀应助Radiance采纳,获得10
17秒前
wangxw完成签到,获得积分10
18秒前
20秒前
科研通AI2S应助傻傻的修洁采纳,获得10
20秒前
1033524682发布了新的文献求助30
24秒前
24秒前
neao完成签到 ,获得积分10
27秒前
Lucas应助邓润杰采纳,获得10
28秒前
Radiance发布了新的文献求助10
30秒前
Ava应助傻傻的修洁采纳,获得10
36秒前
Radiance完成签到,获得积分10
38秒前
ceeray23发布了新的文献求助20
38秒前
丘比特应助邓润杰采纳,获得10
39秒前
1033524682完成签到,获得积分10
40秒前
成就觅海完成签到 ,获得积分10
41秒前
窝不想写论文完成签到 ,获得积分10
44秒前
47秒前
48秒前
科研通AI6应助Li采纳,获得50
49秒前
小马甲应助君寻采纳,获得10
49秒前
50秒前
50秒前
50秒前
传奇3应助邓润杰采纳,获得10
51秒前
sandy发布了新的文献求助10
55秒前
科研通AI6应助MIMI采纳,获得10
56秒前
科研通AI6应助邓润杰采纳,获得10
59秒前
在水一方应助傻傻的修洁采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
Akaza完成签到 ,获得积分10
1分钟前
1分钟前
高兴宝贝完成签到 ,获得积分10
1分钟前
打打应助傻傻的修洁采纳,获得10
1分钟前
脑洞疼应助munchys采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
达西苏发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737