Deep Learning Based Multi Pose Human Face Matching System

计算机科学 人工智能 面子(社会学概念) 计算机视觉 人脸检测 姿势 匹配(统计) 旋转(数学) 三维人脸识别 帧(网络) 对象类检测 面部识别系统 模式识别(心理学) 数学 社会科学 统计 社会学 电信
作者
Muhammad Sohail,Ijaz Ali Shoukat,Abd Ullah Khan,Haram Fatima,Mohsin Raza Jafri,Muhammad Azfar Yaqub,Antonio Liotta
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 26046-26061 被引量:4
标识
DOI:10.1109/access.2024.3366451
摘要

Current techniques for multi-pose human face matching yield suboptimal outcomes because of the intricate nature of pose equalization and face rotation. Deep learning models, such as YOLO-V5, etc., that have been proposed to tackle these complexities, suffer from slow frame matching speeds and therefore exhibit low face recognition accuracy. Concerning this, certain literature investigated multi-pose human face detection systems; however, those studies are of elementary level and do not adequately analyze the utility of those systems. To fill this research gap, we propose a real-time face matching algorithm based on YOLO-V5. Our algorithm utilizes multi-pose human patterns and considers various face orientations, including organizational faces and left, right, top, and bottom alignments, to recognize multiple aspects of people. Using face poses, the algorithm identifies face positions in a dataset of images obtained from mixed pattern live streams, and compares faces with a specific piece of the face that has a relatively similar spectrum for matching with a given dataset. Once a match is found, the algorithm displays the face on Google Colab, collected during the learning phase with the Robo-flow key, and tracks it using the YOLO-V5 face monitor. Alignment variations are broken up into different positions, where each type of face is uniquely learned to have its own study demonstrated. This method offers several benefits for identifying and monitoring humans using their labeling tag as a pattern name, including high face-matching accuracy and minimum speed of owing face-to-pose variations. Furthermore, the algorithm addresses the face rotation issue by introducing a mixture of error functions for execution time, accuracy loss, frame-wise failure, and identity loss, attempting to guide the authenticity of the produced image frame. Experimental results confirm effectiveness of the algorithm in terms of improved accuracy and reduced delay in the face-matching paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助Nansen采纳,获得10
2秒前
ercha完成签到,获得积分10
2秒前
2秒前
鲤鱼泡泡完成签到,获得积分20
2秒前
PenguinYW给深情香寒的求助进行了留言
2秒前
樱花喵发布了新的文献求助30
3秒前
4秒前
4秒前
独特筝完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
sciDoge应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
小杨发布了新的文献求助10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
sciDoge应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
SYLH应助kanglan采纳,获得10
6秒前
6秒前
zhz完成签到,获得积分10
6秒前
Hugt发布了新的文献求助20
7秒前
7秒前
8秒前
9秒前
郭源潮完成签到,获得积分10
9秒前
9秒前
wjl发布了新的文献求助10
10秒前
俭朴千万完成签到,获得积分10
10秒前
11秒前
笙声慢发布了新的文献求助10
11秒前
别说话完成签到,获得积分10
12秒前
CC发布了新的文献求助30
12秒前
石化的海报完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090