亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Multi Pose Human Face Matching System

计算机科学 人工智能 面子(社会学概念) 计算机视觉 人脸检测 姿势 匹配(统计) 旋转(数学) 三维人脸识别 帧(网络) 对象类检测 面部识别系统 模式识别(心理学) 数学 统计 社会学 电信 社会科学
作者
Muhammad Sohail,Ijaz Ali Shoukat,Abd Ullah Khan,Haram Fatima,Mohsin Raza Jafri,Muhammad Azfar Yaqub,Antonio Liotta
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 26046-26061 被引量:4
标识
DOI:10.1109/access.2024.3366451
摘要

Current techniques for multi-pose human face matching yield suboptimal outcomes because of the intricate nature of pose equalization and face rotation. Deep learning models, such as YOLO-V5, etc., that have been proposed to tackle these complexities, suffer from slow frame matching speeds and therefore exhibit low face recognition accuracy. Concerning this, certain literature investigated multi-pose human face detection systems; however, those studies are of elementary level and do not adequately analyze the utility of those systems. To fill this research gap, we propose a real-time face matching algorithm based on YOLO-V5. Our algorithm utilizes multi-pose human patterns and considers various face orientations, including organizational faces and left, right, top, and bottom alignments, to recognize multiple aspects of people. Using face poses, the algorithm identifies face positions in a dataset of images obtained from mixed pattern live streams, and compares faces with a specific piece of the face that has a relatively similar spectrum for matching with a given dataset. Once a match is found, the algorithm displays the face on Google Colab, collected during the learning phase with the Robo-flow key, and tracks it using the YOLO-V5 face monitor. Alignment variations are broken up into different positions, where each type of face is uniquely learned to have its own study demonstrated. This method offers several benefits for identifying and monitoring humans using their labeling tag as a pattern name, including high face-matching accuracy and minimum speed of owing face-to-pose variations. Furthermore, the algorithm addresses the face rotation issue by introducing a mixture of error functions for execution time, accuracy loss, frame-wise failure, and identity loss, attempting to guide the authenticity of the produced image frame. Experimental results confirm effectiveness of the algorithm in terms of improved accuracy and reduced delay in the face-matching paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41秒前
量子星尘发布了新的文献求助10
50秒前
Omni发布了新的文献求助10
54秒前
1分钟前
1分钟前
swg发布了新的文献求助10
1分钟前
火星的雪完成签到 ,获得积分0
1分钟前
九千七完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
swg发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
nannan完成签到 ,获得积分10
3分钟前
小马甲应助sunshine采纳,获得30
4分钟前
4分钟前
碧蓝的万宝路完成签到 ,获得积分10
4分钟前
千里草发布了新的文献求助10
4分钟前
sunshine发布了新的文献求助30
4分钟前
4分钟前
无花果应助Sience采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Sience发布了新的文献求助10
4分钟前
5分钟前
5分钟前
lalala完成签到,获得积分10
5分钟前
祖宛凝完成签到,获得积分10
5分钟前
5分钟前
张秋贤完成签到,获得积分10
6分钟前
陈如馨发布了新的文献求助10
6分钟前
6分钟前
JamesPei应助hms采纳,获得10
6分钟前
swg发布了新的文献求助10
6分钟前
曹官子完成签到 ,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
hms完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611884
求助须知:如何正确求助?哪些是违规求助? 4017289
关于积分的说明 12436182
捐赠科研通 3699253
什么是DOI,文献DOI怎么找? 2040064
邀请新用户注册赠送积分活动 1072855
科研通“疑难数据库(出版商)”最低求助积分说明 956546