Deep Learning Based Multi Pose Human Face Matching System

计算机科学 人工智能 面子(社会学概念) 计算机视觉 人脸检测 姿势 匹配(统计) 旋转(数学) 三维人脸识别 帧(网络) 对象类检测 面部识别系统 模式识别(心理学) 数学 统计 社会学 电信 社会科学
作者
Muhammad Sohail,Ijaz Ali Shoukat,Abd Ullah Khan,Haram Fatima,Mohsin Raza Jafri,Muhammad Azfar Yaqub,Antonio Liotta
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 26046-26061 被引量:4
标识
DOI:10.1109/access.2024.3366451
摘要

Current techniques for multi-pose human face matching yield suboptimal outcomes because of the intricate nature of pose equalization and face rotation. Deep learning models, such as YOLO-V5, etc., that have been proposed to tackle these complexities, suffer from slow frame matching speeds and therefore exhibit low face recognition accuracy. Concerning this, certain literature investigated multi-pose human face detection systems; however, those studies are of elementary level and do not adequately analyze the utility of those systems. To fill this research gap, we propose a real-time face matching algorithm based on YOLO-V5. Our algorithm utilizes multi-pose human patterns and considers various face orientations, including organizational faces and left, right, top, and bottom alignments, to recognize multiple aspects of people. Using face poses, the algorithm identifies face positions in a dataset of images obtained from mixed pattern live streams, and compares faces with a specific piece of the face that has a relatively similar spectrum for matching with a given dataset. Once a match is found, the algorithm displays the face on Google Colab, collected during the learning phase with the Robo-flow key, and tracks it using the YOLO-V5 face monitor. Alignment variations are broken up into different positions, where each type of face is uniquely learned to have its own study demonstrated. This method offers several benefits for identifying and monitoring humans using their labeling tag as a pattern name, including high face-matching accuracy and minimum speed of owing face-to-pose variations. Furthermore, the algorithm addresses the face rotation issue by introducing a mixture of error functions for execution time, accuracy loss, frame-wise failure, and identity loss, attempting to guide the authenticity of the produced image frame. Experimental results confirm effectiveness of the algorithm in terms of improved accuracy and reduced delay in the face-matching paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助112采纳,获得10
1秒前
choichoi发布了新的文献求助10
1秒前
2秒前
yzx完成签到,获得积分20
2秒前
2秒前
宋金幽谷发布了新的文献求助20
3秒前
完美世界应助小马哥采纳,获得10
3秒前
孙萌萌发布了新的文献求助10
3秒前
3秒前
张红秋发布了新的文献求助10
4秒前
苹果诗珊发布了新的文献求助10
5秒前
5秒前
xue完成签到,获得积分10
5秒前
5秒前
Sally发布了新的文献求助10
7秒前
妩媚的幼丝完成签到,获得积分10
9秒前
赘婿应助lrelia02采纳,获得10
10秒前
11秒前
11秒前
11秒前
科研通AI2S应助xx采纳,获得10
11秒前
12秒前
12秒前
12秒前
左手树完成签到,获得积分10
12秒前
13秒前
13秒前
上官若男应助choichoi采纳,获得10
13秒前
彭于晏应助雪花采纳,获得10
14秒前
乐乐应助研友_8RyzBZ采纳,获得10
15秒前
russing完成签到 ,获得积分10
15秒前
爆米花应助xgs采纳,获得10
15秒前
亮亮完成签到 ,获得积分10
15秒前
科研通AI5应助yijun采纳,获得30
16秒前
16秒前
美女博士发布了新的文献求助10
16秒前
不是山顶完成签到,获得积分10
16秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075105
求助须知:如何正确求助?哪些是违规求助? 4294947
关于积分的说明 13383012
捐赠科研通 4116702
什么是DOI,文献DOI怎么找? 2254423
邀请新用户注册赠送积分活动 1258996
关于科研通互助平台的介绍 1191861