生物
猪流行性腹泻病毒
锌指
冠状病毒
病毒学
细胞生物学
病毒蛋白
泛素连接酶
基因组
遗传学
病毒
基因
泛素
转录因子
医学
疾病
2019年冠状病毒病(COVID-19)
病理
传染病(医学专业)
作者
Jantakarn Chuenchat,Supasek Kardkarnklai,Jaraspim Narkpuk,Benjamas Liwnaree,Anan Jongkaewwattana,Peera Jaru-Ampornpan,Suttipun Sungsuwan
标识
DOI:10.1016/j.vetmic.2024.110033
摘要
The genomes of many pathogens contain high-CpG content, which is less common in most vertebrate host genomes. Such a distinct di-nucleotide composition in a non-self invader constitutes a special feature recognized by its host's immune system. The zinc-finger antiviral protein (ZAP) is part of the pattern recognition receptors (PRRs) that recognize CpG-rich viral RNA and subsequently initiate RNA degradation as an antiviral defense measure. To counteract such ZAP-mediated restriction, some viruses evolve to either suppress the CpG content in their genome or produce an antagonistic factor to evade ZAP sensing. We have previously shown that a coronavirus, Porcine epidermic diarrhea virus (PEDV), employs its nucleocapsid protein (PEDV-N) to suppress the ZAP-dependent antiviral activity. Here, we propose a mechanism by which PEDV-N suppresses ZAP function by interfering with the interaction between ZAP and its essential cofactor, Tripartite motif-containing protein 25 (TRIM25). PEDV-N was found to interact with ZAP through its N-terminal domain and with TRIM25 through its C-terminal domain. We showed that PEDV-N and ZAP compete for binding to the SPla and the RYanodine Receptor (SPRY) domain of TRIM25, resulting in PEDV-N preventing TRIM25 from interacting with and promoting ZAP. Our result also showed that the presence of PEDV-N in the complex reduces the E3 ligase activity of TRIM25 on ZAP, which is required for the antiviral activity of ZAP. The host-pathogen interaction mechanism presented herein provides an insight into the new function of this abundant and versatile viral protein from a coronavirus which could be a key target for development of antiviral interventions.
科研通智能强力驱动
Strongly Powered by AbleSci AI