Noninvasive diagnostic imaging for endometriosis part 1: a systematic review of recent developments in ultrasound, combination imaging, and artificial intelligence

子宫内膜异位症 医学 超声成像 超声波 医学物理学 放射科 妇科
作者
Jodie Avery,Alison Deslandes,Shay M. Freger,Mathew Leonardi,Glen Lo,Gustavo Carneiro,G. Condous,M. Louise Hull,M. Louise Hull,Gustavo Carneiro,Jodie Avery,Rebecca O’Hara,G. Condous,Steven Knox,Mathew Leonardi,Catrina Panuccio,Aisha Sirop,Jason Abbott,David Alejandro González‐Chica,Hu Wang
出处
期刊:Fertility and Sterility [Elsevier BV]
卷期号:121 (2): 164-188 被引量:22
标识
DOI:10.1016/j.fertnstert.2023.12.008
摘要

Endometriosis affects 1 in 9 women and those assigned female at birth. However, it takes 6.4 years to diagnose using the conventional standard of laparoscopy. Noninvasive imaging enables a timelier diagnosis, reducing diagnostic delay as well as the risk and expense of surgery. This review updates the exponentially increasing literature exploring the diagnostic value of endometriosis specialist transvaginal ultrasound (eTVUS), combinations of eTVUS and specialist magnetic resonance imaging, and artificial intelligence. Concentrating on literature that emerged after the publication of the IDEA consensus in 2016, we identified 6192 publications and reviewed 49 studies focused on diagnosing endometriosis using emerging imaging techniques. The diagnostic performance of eTVUS continues to improve but there are still limitations. eTVUS reliably detects ovarian endometriomas, shows high specificity for deep endometriosis and should be considered diagnostic. However, a negative scan cannot preclude endometriosis as eTVUS shows moderate sensitivity scores for deep endometriosis, with the sonographic evaluation of superficial endometriosis still in its infancy. The fast-growing area of artificial intelligence in endometriosis detection is still evolving, but shows great promise, particularly in the area of combined multimodal techniques. We finalize our commentary by exploring the implications of practice change for surgeons, sonographers, radiologists, and fertility specialists. Direct benefits for endometriosis patients include reduced diagnostic delay, better access to targeted therapeutics, higher quality operative procedures, and improved fertility treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
施天问发布了新的文献求助10
刚刚
YANDD发布了新的文献求助10
刚刚
SciGPT应助11采纳,获得10
刚刚
涂钰完成签到,获得积分20
1秒前
1秒前
shang发布了新的文献求助10
1秒前
enchanted完成签到,获得积分10
1秒前
杀鸡不用刀完成签到 ,获得积分10
1秒前
Lucas应助lllm采纳,获得10
2秒前
英俊001完成签到 ,获得积分10
2秒前
2秒前
Liang完成签到,获得积分10
2秒前
2秒前
3秒前
大个应助猪猪hero采纳,获得10
3秒前
3秒前
感动水杯发布了新的文献求助10
4秒前
4秒前
louis136116发布了新的文献求助10
4秒前
lv发布了新的文献求助10
4秒前
结实的栾完成签到,获得积分10
5秒前
Akim应助hzhang0807采纳,获得10
5秒前
二号完成签到,获得积分10
5秒前
五氧化二磷完成签到,获得积分10
5秒前
望道完成签到,获得积分10
6秒前
雄i完成签到,获得积分10
6秒前
yuyiyi发布了新的文献求助10
6秒前
坚定的海露完成签到,获得积分10
7秒前
aaronpancn发布了新的文献求助20
7秒前
7秒前
7秒前
bifo发布了新的文献求助10
7秒前
Kuripa完成签到,获得积分10
7秒前
xx发布了新的文献求助10
9秒前
xinchengzhu完成签到 ,获得积分10
9秒前
CodeCraft应助CM采纳,获得10
10秒前
木子发布了新的文献求助10
10秒前
AskNature完成签到 ,获得积分10
10秒前
霸气的老姆完成签到,获得积分20
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345