Multi-task twin support vector machine with Universum data

计算机科学 支持向量机 任务(项目管理) 人工智能 机器学习 数据挖掘 经济 管理
作者
Hossein Moosaei,Fatemeh Bazikar,Milan Hladík
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107951-107951
标识
DOI:10.1016/j.engappai.2024.107951
摘要

Multi-task learning (MTL) has emerged as a promising topic of machine learning in recent years, aiming to enhance the performance of numerous related learning tasks by exploiting beneficial information. Traditionally, during the training phase, existing multi-task learning models focused solely on the data related to the target task. In our approach, Universum data, which does not belong to any class in the classification problem but belongs to the same domain as the target data, is incorporated into classifier training as prior knowledge. This study looks at the challenge of multi-task learning using Universum data to employ non-target task data, which leads to better performance. It proposes a multi-task twin support vector machine with Universum data (UMTSVM) and provides two approaches to its solution. The first approach takes into account the dual formulation of UMTSVM and tries to solve a quadratic programming problem. The second approach formulates a least-squares version of UMTSVM and refers to it as LS-UMTSVM to further increase the generalization performance. The solution of the two primal problems in LS-UMTSVM is simplified to solving just two systems of linear equations, resulting in an incredibly simple and quick approach. Numerical experiments on several popular multi-task data sets and medical data sets demonstrate the efficiency of the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星星完成签到,获得积分10
刚刚
1秒前
加菲猫发布了新的文献求助10
2秒前
jamin911关注了科研通微信公众号
3秒前
4秒前
like1994发布了新的文献求助10
5秒前
6秒前
shilong.yang发布了新的文献求助20
8秒前
sunny关注了科研通微信公众号
8秒前
包子完成签到,获得积分10
9秒前
9秒前
豆dou发布了新的文献求助10
10秒前
11秒前
请叫我风吹麦浪应助科研采纳,获得10
12秒前
seannnnnnn完成签到 ,获得积分10
13秒前
机灵安白发布了新的文献求助10
13秒前
卡列宁的微笑完成签到,获得积分10
13秒前
李爱国应助Saluzi采纳,获得10
14秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
在水一方应助like1994采纳,获得150
16秒前
16秒前
俏皮蜜蜂发布了新的文献求助10
16秒前
18秒前
半城微凉应助Ethan采纳,获得10
18秒前
nanlinhua完成签到,获得积分10
19秒前
清脆的雁丝完成签到,获得积分10
20秒前
善良的人发布了新的文献求助10
21秒前
周周发布了新的文献求助10
21秒前
科研通AI5应助彼岸花开采纳,获得10
22秒前
沐青应助科研通管家采纳,获得50
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
hi应助科研通管家采纳,获得10
24秒前
hi应助科研通管家采纳,获得10
24秒前
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970004
求助须知:如何正确求助?哪些是违规求助? 3514701
关于积分的说明 11175468
捐赠科研通 3250051
什么是DOI,文献DOI怎么找? 1795187
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804925