Classification of Tuna Meat Grade Quality Based on Color Space Using Wavelet and k-Nearest Neighbor Algorithm

金枪鱼 k-最近邻算法 计算机科学 模式识别(心理学) 小波 人工智能 色空间 空格(标点符号) 算法 渔业 图像(数学) 生物 操作系统
作者
I Gede Sujana Eka Putra,I Ketut Gede Darma Putra,Made Sudarma,Oka Sudana
标识
DOI:10.1109/icsgteis60500.2023.10424189
摘要

Tuna products are one of Indonesia's leading export commodity products. Accuracy in determining the quality grade of tuna is necessary to ensure food safety and product quality. Several cases of rejection of Indonesian fishery products by the United States and cases of food poisoning show a lack of food safety management in Indonesia. Determination of fish quality grade was done manually by identifying the eyes condition, gills, and meat color, taking a sample of tuna meat using a spike, which is the manual grading process causing human error. Previous studies had been carried out to identify the freshness and quality of fish using odor profiles, and color profiles from color sensors, measuring fish freshness and quality based on fish eye images. According to Robert DiGregorio, five parameters determine the grade quality of tuna, namely freshness, fish size and shape, meat color, texture, and fat content. Fish grades are grouped into grade 1, grade 2+, grade 2, and grade 3. This study aims to determine the grade quality of tuna meat based on color space through image preprocessing, dataset training, and classification. Image preprocessing consists of image cropping, converting images from RGB to HSV, and feature extraction using a wavelet. The training phase uses the k-NN algorithm using k=4 based on the number of classes. The result shows the correlation coefficient between grades of feature extraction using wavelet Symlet better than Haar. Classification of 65 images test dataset using Symlet wavelet and k-NN has a better accuracy of 81.8% compared to the Haar wavelet k-NN with an accuracy of 80.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
风中小夏发布了新的文献求助10
3秒前
4秒前
hahaha完成签到,获得积分10
5秒前
Crystal完成签到,获得积分10
5秒前
6秒前
dm11发布了新的文献求助10
6秒前
天蓝完成签到,获得积分10
7秒前
思源应助youger采纳,获得10
7秒前
changl2023发布了新的文献求助10
8秒前
9秒前
ding应助Moliria采纳,获得10
10秒前
彦希完成签到 ,获得积分10
11秒前
CodeCraft应助东东采纳,获得10
11秒前
sjsuA完成签到,获得积分10
11秒前
11秒前
大江发布了新的文献求助10
12秒前
14秒前
huahua完成签到 ,获得积分10
15秒前
毛豆爸爸应助ZZP27采纳,获得10
15秒前
cocolu应助文静三颜采纳,获得10
16秒前
邢契发布了新的文献求助10
16秒前
斯文远望完成签到,获得积分10
18秒前
19秒前
彭于晏应助年轻的凤采纳,获得10
19秒前
20秒前
20秒前
djdn完成签到,获得积分20
22秒前
12发布了新的文献求助10
22秒前
油2发布了新的文献求助10
22秒前
22秒前
小丽发布了新的文献求助10
23秒前
幸福大白发布了新的文献求助10
24秒前
24秒前
irkustk完成签到,获得积分10
25秒前
opair完成签到,获得积分10
25秒前
25秒前
25秒前
俏皮的一德完成签到,获得积分10
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517