Reconfigurable Microlens Array Enables Tunable Imaging Based on Shape Memory Polymers

微透镜 材料科学 焦距 控制重构 光电子学 光学 纳米技术 计算机科学 镜头(地质) 嵌入式系统 物理
作者
Zhi‐Juan Sun,Yuqing Liu,Jiayi Wan,Xueqing Liu,Dong-Dong Han,Qi‐Dai Chen,Yong‐Lai Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (7): 9581-9592 被引量:8
标识
DOI:10.1021/acsami.4c01030
摘要

Microlens arrays (MLAs) with a tunable imaging ability are core components of advanced micro-optical systems. Nevertheless, tunable MLAs generally suffer from high power consumption, an undeformable rigid body, large and complex systems, or limited focal length tunability. The combination of reconfigurable smart materials with MLAs may lead to distinct advantages including programmable deformation, remote manipulation, and multimodal tunability. However, unlike photopolymers that permit flexible structuring, the fabrication of tunable MLAs and compound eyes (CEs) based on transparent smart materials is still rare. In this work, we report reconfigurable MLAs that enable tunable imaging based on shape memory polymers (SMPs). The smart MLAs with closely packed 200 × 200 microlenses (40.0 μm in size) are fabricated via a combined technology that involves wet etching-assisted femtosecond laser direct writing of MLA templates on quartz, soft lithography for MLA duplication using SMPs, and the mechanical heat setting for programmable reconfiguration. By stretching or squeezing the shape memory MLAs at the transition temperature (80 °C), the size, profiles, and spatial distributions of the microlenses can be programmed. When the MLA is stretched from 0 to 120% (area ratio), the focal length is increased from 116 to 283 μm. As a proof of concept, reconfigurable MLAs and a 3D CE with a tunable field of view (FOV, 160–0°) have been demonstrated in which the thermally triggered shape memory deformation has been employed for tunable imaging. The reconfigurable MLAs and CEs with a tunable focal length and adjustable FOV may hold great promise for developing smart micro-optical systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七安发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
shiyaouao发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
1234发布了新的文献求助50
4秒前
芒果发布了新的文献求助10
4秒前
夏寒珊发布了新的文献求助10
5秒前
Han发布了新的文献求助10
5秒前
WUHUDASM发布了新的文献求助10
5秒前
齐齐巴宾发布了新的文献求助10
5秒前
5秒前
5秒前
aa1212121发布了新的文献求助10
5秒前
6秒前
思源应助pzh采纳,获得10
6秒前
7秒前
7秒前
ge55完成签到,获得积分20
8秒前
好运来完成签到,获得积分10
9秒前
共享精神应助山山采纳,获得10
12秒前
13秒前
ge55发布了新的文献求助10
13秒前
sunny发布了新的文献求助10
13秒前
14秒前
能不能下载啊完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
17秒前
研友_VZG7GZ应助优雅涔雨采纳,获得10
17秒前
枣点困糕完成签到,获得积分10
17秒前
布洛芬完成签到,获得积分10
18秒前
19秒前
三七发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253