亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation

代表(政治) 点云 点(几何) 计算机科学 云计算 材料科学 人工智能 纳米技术 机器学习 数学 几何学 政治 政治学 法学 操作系统
作者
Soroush Ahmadi,Mohammad Amin Ghanavati,Sohrab Rohani
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1153-1161 被引量:15
标识
DOI:10.1021/acs.chemmater.3c01437
摘要

The design and synthesis of cocrystals have emerged as promising crystal engineering strategies for enhancing the physicochemical properties of a diverse range of target molecules. A prediction strategy to identify whether a pair of target and auxiliary molecules would form a cocrystal can greatly accelerate the process of cocrystal discovery. In this study, we compiled and performed DFT calculations for 12,776 molecules (6,388 cocrystals). All entries in the database were obtained from experimental attempts reported in the literature. Electrostatic potential (ESP) surfaces were then extracted from the DFT results and used for the development of four machine learning models (PointNet, ANN, RF, Ensemble). The Ensemble model, leveraging the complementary strengths of the PointNet, ANN, and RF models, demonstrated superior discriminatory performance with a BACC (0.942) and an AUC (0.986) on the unseen test data subset. To assess the performance of the models on individual molecules, we separated the cocrystals of caffeine, fumaric acid, and salicylic acid from the overall database. The Ensemble model exhibited remarkable robustness, classifying the 312 cocrystals in this subset into their respective classes, with an average BACC of 98%. Furthermore, through conducting data analysis, 132 batches of cocrystal instances were gathered. After three batches were excluded, our proposed models were tested with these previously unseen molecules both before and after implementation of a batchwise retraining method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
35秒前
caspar发布了新的文献求助10
40秒前
YY关注了科研通微信公众号
54秒前
生动的沛白完成签到 ,获得积分10
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6.1应助一见喜采纳,获得10
1分钟前
YY发布了新的文献求助10
1分钟前
火火完成签到 ,获得积分10
1分钟前
Lampe完成签到,获得积分10
1分钟前
Chere20200628完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小宇完成签到,获得积分10
1分钟前
一见喜发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Chris完成签到 ,获得积分0
2分钟前
2分钟前
wure10完成签到 ,获得积分10
2分钟前
YH完成签到,获得积分10
2分钟前
FODCOC完成签到,获得积分10
3分钟前
Elthrai完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
YY完成签到,获得积分10
3分钟前
打工人发布了新的文献求助10
3分钟前
张杰发布了新的文献求助10
3分钟前
汉堡包应助科研菜鸡采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739520
求助须知:如何正确求助?哪些是违规求助? 5386817
关于积分的说明 15339751
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624069
邀请新用户注册赠送积分活动 1572769
关于科研通互助平台的介绍 1529575