Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation

代表(政治) 点云 点(几何) 计算机科学 云计算 材料科学 人工智能 纳米技术 机器学习 数学 几何学 政治学 政治 操作系统 法学
作者
Soroush Ahmadi,Mohammad Amin Ghanavati,Sohrab Rohani
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1153-1161 被引量:1
标识
DOI:10.1021/acs.chemmater.3c01437
摘要

The design and synthesis of cocrystals have emerged as promising crystal engineering strategies for enhancing the physicochemical properties of a diverse range of target molecules. A prediction strategy to identify whether a pair of target and auxiliary molecules would form a cocrystal can greatly accelerate the process of cocrystal discovery. In this study, we compiled and performed DFT calculations for 12,776 molecules (6,388 cocrystals). All entries in the database were obtained from experimental attempts reported in the literature. Electrostatic potential (ESP) surfaces were then extracted from the DFT results and used for the development of four machine learning models (PointNet, ANN, RF, Ensemble). The Ensemble model, leveraging the complementary strengths of the PointNet, ANN, and RF models, demonstrated superior discriminatory performance with a BACC (0.942) and an AUC (0.986) on the unseen test data subset. To assess the performance of the models on individual molecules, we separated the cocrystals of caffeine, fumaric acid, and salicylic acid from the overall database. The Ensemble model exhibited remarkable robustness, classifying the 312 cocrystals in this subset into their respective classes, with an average BACC of 98%. Furthermore, through conducting data analysis, 132 batches of cocrystal instances were gathered. After three batches were excluded, our proposed models were tested with these previously unseen molecules both before and after implementation of a batchwise retraining method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Derek完成签到,获得积分10
刚刚
单纯的访风完成签到,获得积分10
刚刚
尘中磨镜人完成签到,获得积分10
1秒前
2秒前
nuistd完成签到,获得积分10
2秒前
陈子阳yyds完成签到,获得积分10
2秒前
徐hb发布了新的文献求助10
3秒前
3秒前
张成协完成签到,获得积分10
3秒前
Orange应助跳跃的语柔采纳,获得10
3秒前
江你一军完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
李木子完成签到 ,获得积分10
4秒前
jiaojiao发布了新的文献求助10
4秒前
4秒前
hei完成签到 ,获得积分10
5秒前
5秒前
6秒前
RaynorHank完成签到,获得积分10
6秒前
CScs25完成签到,获得积分10
6秒前
呼呼啦啦完成签到,获得积分10
6秒前
青山完成签到,获得积分10
6秒前
粥粥完成签到,获得积分0
6秒前
束玲玲完成签到,获得积分10
6秒前
Leeu完成签到,获得积分10
6秒前
jyu完成签到,获得积分10
7秒前
新帅完成签到,获得积分10
7秒前
桑榆非晚完成签到,获得积分10
7秒前
令狐万仇完成签到,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
zzzzzzzp完成签到,获得积分10
7秒前
taytay完成签到,获得积分10
7秒前
LEE123完成签到,获得积分10
7秒前
8秒前
Lze发布了新的文献求助10
8秒前
希望天下0贩的0应助夜夜采纳,获得10
8秒前
猫小咪发布了新的文献求助10
9秒前
RaynorHank发布了新的文献求助50
9秒前
9秒前
cccccc完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162882
求助须知:如何正确求助?哪些是违规求助? 4355956
关于积分的说明 13560837
捐赠科研通 4200975
什么是DOI,文献DOI怎么找? 2304090
邀请新用户注册赠送积分活动 1304063
关于科研通互助平台的介绍 1250390