Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation

代表(政治) 点云 点(几何) 计算机科学 云计算 材料科学 人工智能 纳米技术 机器学习 数学 几何学 政治 政治学 法学 操作系统
作者
Soroush Ahmadi,Mohammad Amin Ghanavati,Sohrab Rohani
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1153-1161 被引量:1
标识
DOI:10.1021/acs.chemmater.3c01437
摘要

The design and synthesis of cocrystals have emerged as promising crystal engineering strategies for enhancing the physicochemical properties of a diverse range of target molecules. A prediction strategy to identify whether a pair of target and auxiliary molecules would form a cocrystal can greatly accelerate the process of cocrystal discovery. In this study, we compiled and performed DFT calculations for 12,776 molecules (6,388 cocrystals). All entries in the database were obtained from experimental attempts reported in the literature. Electrostatic potential (ESP) surfaces were then extracted from the DFT results and used for the development of four machine learning models (PointNet, ANN, RF, Ensemble). The Ensemble model, leveraging the complementary strengths of the PointNet, ANN, and RF models, demonstrated superior discriminatory performance with a BACC (0.942) and an AUC (0.986) on the unseen test data subset. To assess the performance of the models on individual molecules, we separated the cocrystals of caffeine, fumaric acid, and salicylic acid from the overall database. The Ensemble model exhibited remarkable robustness, classifying the 312 cocrystals in this subset into their respective classes, with an average BACC of 98%. Furthermore, through conducting data analysis, 132 batches of cocrystal instances were gathered. After three batches were excluded, our proposed models were tested with these previously unseen molecules both before and after implementation of a batchwise retraining method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simple发布了新的文献求助10
1秒前
CodeCraft应助遇见采纳,获得10
1秒前
科研小菜鸡完成签到,获得积分10
1秒前
bkagyin应助冷傲的夜香采纳,获得10
2秒前
微不足道发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
Alaskan完成签到,获得积分20
4秒前
斯文败类应助hope采纳,获得10
5秒前
5秒前
Alaskan发布了新的文献求助10
7秒前
m(_._)m完成签到 ,获得积分0
10秒前
10秒前
香蕉觅云应助微不足道采纳,获得10
11秒前
李沐籽完成签到,获得积分20
11秒前
加菲丰丰应助hd采纳,获得20
12秒前
15秒前
17秒前
17秒前
浮云完成签到 ,获得积分10
18秒前
李健的小迷弟应助Alaskan采纳,获得10
20秒前
20秒前
20秒前
穆紫应助Rita采纳,获得10
20秒前
20秒前
21秒前
21秒前
cc应助英勇的鼠标采纳,获得10
22秒前
一二三发布了新的文献求助10
23秒前
搜集达人应助鲤鱼大炮采纳,获得10
25秒前
25秒前
jianjiao发布了新的文献求助20
25秒前
饺子发布了新的文献求助10
26秒前
you完成签到,获得积分10
26秒前
十月完成签到,获得积分10
27秒前
27秒前
汉堡包应助世界和平采纳,获得30
28秒前
周凡淇发布了新的文献求助30
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328