Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation

代表(政治) 点云 点(几何) 计算机科学 云计算 材料科学 人工智能 纳米技术 机器学习 数学 几何学 政治 政治学 法学 操作系统
作者
Soroush Ahmadi,Mohammad Amin Ghanavati,Sohrab Rohani
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1153-1161 被引量:14
标识
DOI:10.1021/acs.chemmater.3c01437
摘要

The design and synthesis of cocrystals have emerged as promising crystal engineering strategies for enhancing the physicochemical properties of a diverse range of target molecules. A prediction strategy to identify whether a pair of target and auxiliary molecules would form a cocrystal can greatly accelerate the process of cocrystal discovery. In this study, we compiled and performed DFT calculations for 12,776 molecules (6,388 cocrystals). All entries in the database were obtained from experimental attempts reported in the literature. Electrostatic potential (ESP) surfaces were then extracted from the DFT results and used for the development of four machine learning models (PointNet, ANN, RF, Ensemble). The Ensemble model, leveraging the complementary strengths of the PointNet, ANN, and RF models, demonstrated superior discriminatory performance with a BACC (0.942) and an AUC (0.986) on the unseen test data subset. To assess the performance of the models on individual molecules, we separated the cocrystals of caffeine, fumaric acid, and salicylic acid from the overall database. The Ensemble model exhibited remarkable robustness, classifying the 312 cocrystals in this subset into their respective classes, with an average BACC of 98%. Furthermore, through conducting data analysis, 132 batches of cocrystal instances were gathered. After three batches were excluded, our proposed models were tested with these previously unseen molecules both before and after implementation of a batchwise retraining method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
你好完成签到 ,获得积分0
刚刚
田様应助songjing采纳,获得10
1秒前
song完成签到,获得积分20
1秒前
研友_VZG7GZ应助wyfre采纳,获得10
1秒前
2秒前
xiangwang发布了新的文献求助30
2秒前
mashibeo完成签到,获得积分0
4秒前
4秒前
小小小珂卿完成签到,获得积分10
4秒前
5秒前
单薄自行车完成签到 ,获得积分10
5秒前
科研通AI6应助sssleep采纳,获得10
6秒前
迷途发布了新的文献求助10
7秒前
Bismarck发布了新的文献求助10
7秒前
7秒前
ding应助洁净的醉波采纳,获得10
7秒前
8秒前
光亮的天真完成签到,获得积分10
8秒前
于涉发布了新的文献求助10
9秒前
9秒前
SJP2025发布了新的文献求助10
10秒前
12秒前
结王三完成签到,获得积分10
12秒前
科目三应助要减肥惜雪采纳,获得10
13秒前
的墨完成签到,获得积分10
13秒前
FanWoo完成签到,获得积分10
15秒前
活力的采枫完成签到,获得积分10
15秒前
打打应助微笑傲白采纳,获得10
15秒前
16秒前
阔达晓博发布了新的文献求助10
17秒前
17秒前
一YI发布了新的文献求助10
18秒前
18秒前
Xiaoxiao应助xalone采纳,获得10
19秒前
Ava应助水蓝丨剑月采纳,获得30
20秒前
黄绪林完成签到,获得积分10
20秒前
大尾巴白完成签到,获得积分10
21秒前
Orange应助尊敬寒松采纳,获得10
21秒前
今后应助橘子海采纳,获得10
21秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291