Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation

代表(政治) 点云 点(几何) 计算机科学 云计算 材料科学 人工智能 纳米技术 机器学习 数学 几何学 政治 政治学 法学 操作系统
作者
Soroush Ahmadi,Mohammad Amin Ghanavati,Sohrab Rohani
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1153-1161 被引量:1
标识
DOI:10.1021/acs.chemmater.3c01437
摘要

The design and synthesis of cocrystals have emerged as promising crystal engineering strategies for enhancing the physicochemical properties of a diverse range of target molecules. A prediction strategy to identify whether a pair of target and auxiliary molecules would form a cocrystal can greatly accelerate the process of cocrystal discovery. In this study, we compiled and performed DFT calculations for 12,776 molecules (6,388 cocrystals). All entries in the database were obtained from experimental attempts reported in the literature. Electrostatic potential (ESP) surfaces were then extracted from the DFT results and used for the development of four machine learning models (PointNet, ANN, RF, Ensemble). The Ensemble model, leveraging the complementary strengths of the PointNet, ANN, and RF models, demonstrated superior discriminatory performance with a BACC (0.942) and an AUC (0.986) on the unseen test data subset. To assess the performance of the models on individual molecules, we separated the cocrystals of caffeine, fumaric acid, and salicylic acid from the overall database. The Ensemble model exhibited remarkable robustness, classifying the 312 cocrystals in this subset into their respective classes, with an average BACC of 98%. Furthermore, through conducting data analysis, 132 batches of cocrystal instances were gathered. After three batches were excluded, our proposed models were tested with these previously unseen molecules both before and after implementation of a batchwise retraining method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Redamancy完成签到,获得积分10
1秒前
殷勤的不弱完成签到,获得积分10
2秒前
爆米花应助机灵的觅山采纳,获得10
3秒前
3秒前
Fiona完成签到,获得积分10
6秒前
7秒前
sci完成签到,获得积分10
10秒前
蟋蟀狂舞发布了新的文献求助10
13秒前
shelley完成签到,获得积分10
16秒前
冷艳小刺猬完成签到 ,获得积分10
17秒前
19秒前
搜集达人应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
21秒前
爆米花应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
Hello应助科研通管家采纳,获得10
22秒前
23秒前
700w完成签到 ,获得积分10
24秒前
寂寞的诗云完成签到,获得积分10
24秒前
scfsl完成签到,获得积分10
24秒前
25秒前
幸福大白发布了新的文献求助10
25秒前
sijin1216完成签到,获得积分10
25秒前
小高发布了新的文献求助10
26秒前
歪比巴卜发布了新的文献求助10
27秒前
27秒前
28秒前
OKOK发布了新的文献求助10
28秒前
内向忆南发布了新的文献求助30
32秒前
33秒前
NexusExplorer应助花花采纳,获得10
34秒前
我是老大应助OKOK采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702