Prediction of CODMn concentration in lakes based on spatiotemporal feature screening and interpretable learning methods - A study of Changdang Lake, China

特征(语言学) 中国 环境科学 人工智能 水文学(农业) 地理 地质学 计算机科学 岩土工程 考古 哲学 语言学
作者
Juan Huan,Yongchun Zheng,Xiangen Xu,Hao Zhang,Bing Shi,Chen Zhang,Qucheng Hu,Yixiong Fan,Ninglong Wu,Jiapeng Lv
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108793-108793 被引量:4
标识
DOI:10.1016/j.compag.2024.108793
摘要

The organic pollution of lake water can cause a tremendous threat to the water ecosystem and human health. The CODMn is one of the crucial indicators of lake water quality and is commonly utilized to gauge the extent of organic pollution in lake water. Therefore, this paper selected CODMn as the research object and used the water quality monitoring data of Changdang Lake in China and its upstream and downstream to predict the CODMn concentration in the lake. In order to study the spatial relationship between the lake and upstream and downstream water quality, reflect the joint action of multiple water quality factors in prediction and the interaction between different feature factors. This study combined the XGBoost feature filtering algorithm, maximum mutual information coefficient (MIC), and improved recurrent neural network (GRU) and proposes a hybrid model called XGB-MIC-GRU. The model first used XGBoost to screen and extract the relative importance of water quality characteristics and used the Shapley addition extension (SHAP) method to explain XGBoost feature extraction. Then, the correlation between the lake and the upstream and downstream water quality is calculated through MIC analysis. Finally, the selected water quality factor characteristics and spatial characteristics are input into the GRU model for prediction. The experimental results showed that water temperature, total phosphorus, and total nitrogen are the most important to CODMn, and the upstream US1 and downstream DS1 and DS2 stations are the most closely related to the concentration of CODMn in the lake. By comparing the prediction effect of the model in different time steps, the best 16-time steps related data were selected to predict the value of the next time. MAE, RMSE, and R2 of the model are 0.10, 0.13, and 0.96, respectively. The model has better prediction accuracy and correlation error than the traditional SVR and GPR. The proposed mixed model can accurately predict the concentration of CODMn in the lake. It can assist decision-makers in timely implementation of effective measures to safeguard the lake ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ZTT采纳,获得10
1秒前
1秒前
SciGPT应助粗暴的达采纳,获得10
1秒前
wxl完成签到,获得积分20
1秒前
小P发布了新的文献求助10
2秒前
阿远发布了新的文献求助20
2秒前
所所应助LFC采纳,获得10
2秒前
3秒前
kxy0311发布了新的文献求助10
4秒前
dalian发布了新的文献求助10
4秒前
5秒前
坚定天蓝完成签到,获得积分10
5秒前
张弛华发布了新的文献求助10
6秒前
6秒前
mmyq发布了新的文献求助10
6秒前
6秒前
7秒前
张学良发布了新的文献求助10
7秒前
7秒前
cds完成签到,获得积分10
7秒前
7秒前
8秒前
cds发布了新的文献求助10
9秒前
abc发布了新的文献求助10
10秒前
Jasper应助山茶采纳,获得10
10秒前
隐形曼青应助刘丰铭采纳,获得10
10秒前
orixero应助韩霖采纳,获得10
10秒前
聪慧的土豆关注了科研通微信公众号
10秒前
12秒前
12秒前
解语花发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
Stella应助甜的瓜采纳,获得10
14秒前
16秒前
FashionBoy应助蔚蓝的天空采纳,获得10
16秒前
kk发布了新的文献求助10
16秒前
LFC发布了新的文献求助10
16秒前
17秒前
CodeCraft应助周苗采纳,获得10
17秒前
FashionBoy应助优秀的凡蕾采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013