Prediction of CODMn concentration in lakes based on spatiotemporal feature screening and interpretable learning methods - A study of Changdang Lake, China

特征(语言学) 中国 环境科学 人工智能 水文学(农业) 地理 地质学 计算机科学 岩土工程 考古 语言学 哲学
作者
Juan Huan,Yongchun Zheng,Xiangen Xu,Hao Zhang,Bing Shi,Chen Zhang,Qun Hu,Yixiong Fan,Ninglong Wu,Jiapeng Lv
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108793-108793
标识
DOI:10.1016/j.compag.2024.108793
摘要

The organic pollution of lake water can cause a tremendous threat to the water ecosystem and human health. The CODMn is one of the crucial indicators of lake water quality and is commonly utilized to gauge the extent of organic pollution in lake water. Therefore, this paper selected CODMn as the research object and used the water quality monitoring data of Changdang Lake in China and its upstream and downstream to predict the CODMn concentration in the lake. In order to study the spatial relationship between the lake and upstream and downstream water quality, reflect the joint action of multiple water quality factors in prediction and the interaction between different feature factors. This study combined the XGBoost feature filtering algorithm, maximum mutual information coefficient (MIC), and improved recurrent neural network (GRU) and proposes a hybrid model called XGB-MIC-GRU. The model first used XGBoost to screen and extract the relative importance of water quality characteristics and used the Shapley addition extension (SHAP) method to explain XGBoost feature extraction. Then, the correlation between the lake and the upstream and downstream water quality is calculated through MIC analysis. Finally, the selected water quality factor characteristics and spatial characteristics are input into the GRU model for prediction. The experimental results showed that water temperature, total phosphorus, and total nitrogen are the most important to CODMn, and the upstream US1 and downstream DS1 and DS2 stations are the most closely related to the concentration of CODMn in the lake. By comparing the prediction effect of the model in different time steps, the best 16-time steps related data were selected to predict the value of the next time. MAE, RMSE, and R2 of the model are 0.10, 0.13, and 0.96, respectively. The model has better prediction accuracy and correlation error than the traditional SVR and GPR. The proposed mixed model can accurately predict the concentration of CODMn in the lake. It can assist decision-makers in timely implementation of effective measures to safeguard the lake ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俏皮火发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
搜集达人应助张莹采纳,获得10
5秒前
lumcy发布了新的文献求助10
7秒前
月亮完成签到,获得积分10
8秒前
领导范儿应助汎影采纳,获得10
8秒前
9秒前
10秒前
12秒前
14秒前
treelet007发布了新的文献求助10
15秒前
现代书雪发布了新的文献求助10
17秒前
情怀应助十月采纳,获得10
19秒前
21秒前
雨晴轻发布了新的文献求助10
21秒前
23秒前
笨笨完成签到,获得积分10
24秒前
25秒前
shelly发布了新的文献求助10
26秒前
26秒前
Walter完成签到,获得积分10
27秒前
27秒前
orixero应助pugss采纳,获得10
27秒前
调研昵称发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
30秒前
lxz3131发布了新的文献求助10
31秒前
故事止于冬至完成签到,获得积分10
31秒前
32秒前
锅大离谱发布了新的文献求助10
34秒前
gao发布了新的文献求助10
35秒前
不如愿就释怀完成签到,获得积分10
36秒前
阿辽发布了新的文献求助10
37秒前
搜集达人应助lxz3131采纳,获得10
38秒前
PPSlu完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323