Prediction of CODMn concentration in lakes based on spatiotemporal feature screening and interpretable learning methods - A study of Changdang Lake, China

特征(语言学) 中国 环境科学 人工智能 水文学(农业) 地理 地质学 计算机科学 岩土工程 考古 哲学 语言学
作者
Juan Huan,Yongchun Zheng,Xiangen Xu,Hao Zhang,Bing Shi,Chen Zhang,Qucheng Hu,Yixiong Fan,Ninglong Wu,Jiapeng Lv
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108793-108793 被引量:2
标识
DOI:10.1016/j.compag.2024.108793
摘要

The organic pollution of lake water can cause a tremendous threat to the water ecosystem and human health. The CODMn is one of the crucial indicators of lake water quality and is commonly utilized to gauge the extent of organic pollution in lake water. Therefore, this paper selected CODMn as the research object and used the water quality monitoring data of Changdang Lake in China and its upstream and downstream to predict the CODMn concentration in the lake. In order to study the spatial relationship between the lake and upstream and downstream water quality, reflect the joint action of multiple water quality factors in prediction and the interaction between different feature factors. This study combined the XGBoost feature filtering algorithm, maximum mutual information coefficient (MIC), and improved recurrent neural network (GRU) and proposes a hybrid model called XGB-MIC-GRU. The model first used XGBoost to screen and extract the relative importance of water quality characteristics and used the Shapley addition extension (SHAP) method to explain XGBoost feature extraction. Then, the correlation between the lake and the upstream and downstream water quality is calculated through MIC analysis. Finally, the selected water quality factor characteristics and spatial characteristics are input into the GRU model for prediction. The experimental results showed that water temperature, total phosphorus, and total nitrogen are the most important to CODMn, and the upstream US1 and downstream DS1 and DS2 stations are the most closely related to the concentration of CODMn in the lake. By comparing the prediction effect of the model in different time steps, the best 16-time steps related data were selected to predict the value of the next time. MAE, RMSE, and R2 of the model are 0.10, 0.13, and 0.96, respectively. The model has better prediction accuracy and correlation error than the traditional SVR and GPR. The proposed mixed model can accurately predict the concentration of CODMn in the lake. It can assist decision-makers in timely implementation of effective measures to safeguard the lake ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李阳发布了新的文献求助10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
DYYDYY完成签到,获得积分10
5秒前
gg发布了新的文献求助10
6秒前
眼睛大又蓝完成签到,获得积分10
6秒前
6秒前
黄婷发布了新的文献求助10
7秒前
9秒前
科目三应助kkeyanxiaozi采纳,获得10
10秒前
摩卡完成签到,获得积分10
10秒前
鸽子发布了新的文献求助30
11秒前
1111发布了新的文献求助10
11秒前
lxz发布了新的文献求助10
14秒前
15秒前
爱学习完成签到,获得积分10
15秒前
epiphany完成签到,获得积分20
16秒前
16秒前
黄婷完成签到,获得积分10
18秒前
19秒前
21秒前
chen完成签到,获得积分20
22秒前
22秒前
李冯程发布了新的文献求助10
22秒前
酷炫的听枫完成签到 ,获得积分10
23秒前
epiphany发布了新的文献求助10
23秒前
多多发SCI发布了新的文献求助10
24秒前
24秒前
安静的手链完成签到,获得积分10
24秒前
听说外面下雨了完成签到,获得积分10
25秒前
李健的小迷弟应助dyuephy采纳,获得10
26秒前
黄晓杰2024完成签到,获得积分10
27秒前
有梦不觉人生寒完成签到,获得积分10
27秒前
今后应助超速也文章采纳,获得10
28秒前
回鱼发布了新的文献求助10
28秒前
28秒前
榛蘑大王发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182