计算机科学
虚拟筛选
量子
对接(动物)
编码(内存)
二进制数
二次无约束二元优化
网格
量子计算机
计算科学
算法
理论计算机科学
分子动力学
人工智能
化学
计算化学
物理
数学
医学
算术
量子力学
护理部
几何学
作者
Jinyin Zha,Jiaqi Su,Tiange Li,C Cao,Ma Yin,Hai Wei,Zhiguo Huang,Ling Qian,Kai Wen,Jian Zhang
标识
DOI:10.1021/acs.jctc.3c00943
摘要
Molecular docking is important in drug discovery but is burdensome for classical computers. Here, we introduce Grid Point Matching (GPM) and Feature Atom Matching (FAM) to accelerate pose sampling in molecular docking by encoding the problem into quadratic unconstrained binary optimization (QUBO) models so that it could be solved by quantum computers like the coherent Ising machine (CIM). As a result, GPM shows a sampling power close to that of Glide SP, a method performing an extensive search. Moreover, it is estimated to be 1000 times faster on the CIM than on classical computers. Our methods could boost virtual drug screening of small molecules and peptides in future.
科研通智能强力驱动
Strongly Powered by AbleSci AI