Digital Twin Test-Bench Performance for Marine Diesel Engine Applications

试验台 汽车工程 燃烧 内燃机 柴油机循环 柴油机 柴油 工程类 计算机科学 环境科学 海洋工程 机械工程 压缩比 有机化学 化学
作者
Dmytro Minchev,Roman Varbanets,Oleksandr Shumylo,Vitalii Zalozh,Nadiia Aleksandrovska,Pavlo Bratchenko,Thanh Hai Truong
出处
期刊:Polish Maritime Research [De Gruyter]
卷期号:30 (4): 81-91 被引量:2
标识
DOI:10.2478/pomr-2023-0061
摘要

Abstract The application of Digital Twins is a promising solution for enhancing the efficiency of marine power plant operation, particularly their important components – marine internal combustion engines (ICE). This work presents the concept of applying a Performance Digital Twin for monitoring the technical condition and diagnosing malfunctions of marine ICE, along with its implementation on an experimental test-bench, based on a marine diesel-generator. The main principles of implementing this concept involve data transmission technologies, from the sensors installed on the engine to a server. The Digital Twin, also operating on the server, is used to automatically process the acquired experimental data, accumulate statistics, determine the current technical state of the engine, identify possible malfunctions, and make decisions regarding changes in operating programs. The core element of the Digital Twin is a mathematical model of the marine diesel engine’s operating cycle. In its development, significant attention was devoted to refining the fuel combustion model, as the combustion processes significantly impact both the engine’s fuel efficiency and the level of toxic emissions of exhaust gases. The enhanced model differs from the base model, by considering the variable value of the average droplets’ diameter during fuel injection. This influence on fuel vapourisation, combustion, and the formation of toxic components is substantial, as shown. Using the example of calibrating the model to the test results of a diesel engine under 27 operating modes, it is demonstrated that the application of the improved combustion model allows better adjustment of the Digital Twin to experimental data, thus achieving a more accurate correspondence to a real engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fanghao发布了新的文献求助10
2秒前
老实的牛牛完成签到,获得积分10
3秒前
3秒前
海子的幸福完成签到,获得积分10
4秒前
百香果bxg完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
淡然觅荷发布了新的文献求助10
6秒前
8秒前
听话当小当完成签到,获得积分10
9秒前
xinuo发布了新的文献求助10
13秒前
WittingGU完成签到,获得积分0
13秒前
鳗鱼盼夏完成签到,获得积分10
18秒前
19秒前
23秒前
23秒前
25秒前
研友_MLJWvn完成签到 ,获得积分10
26秒前
杨枝甘露完成签到,获得积分10
26秒前
28秒前
KTaoL完成签到,获得积分10
28秒前
hey,一条完成签到,获得积分10
28秒前
博修发布了新的文献求助10
28秒前
小树和太阳完成签到,获得积分10
29秒前
lgj发布了新的文献求助10
29秒前
无足鸟发布了新的文献求助10
30秒前
陌路完成签到 ,获得积分10
31秒前
无足鸟发布了新的文献求助10
32秒前
zzzzzz完成签到,获得积分20
34秒前
无花果应助包容的剑采纳,获得10
34秒前
37秒前
38秒前
42秒前
开朗雪巧完成签到,获得积分10
43秒前
无辜寒云发布了新的文献求助10
43秒前
酷波er应助药宫采纳,获得10
44秒前
nmamtf发布了新的文献求助10
45秒前
JMrider发布了新的文献求助10
46秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343326
求助须知:如何正确求助?哪些是违规求助? 2970407
关于积分的说明 8643896
捐赠科研通 2650477
什么是DOI,文献DOI怎么找? 1451290
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661492