Nanorough Is Not Slippery Enough: Implications on Shedding and Heat Transfer

聚结(物理) 材料科学 冷凝 润滑油 传热 化学物理 强化传热 机械 纳米技术 化学工程 复合材料 热力学 传热系数 化学 物理 天体生物学 工程类
作者
Daniel Orejon,Yota Maeda,Peng Zhang,Fengyong Lv,Yasuyuki Takata
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (1): 1779-1793 被引量:2
标识
DOI:10.1021/acsami.3c14232
摘要

Lowering droplet-surface interactions via the implementation of lubricant-infused surfaces (LISs) has received important attention in the past years. LISs offer enhanced droplet mobility with low sliding angles and the recently reported slippery Wenzel state, among others, empowered by the presence of the lubricant infused in between the structures, which eventually minimizes the direct interactions between liquid droplets and LISs. Current strategies to increase heat transfer during condensation phase-change relay on minimizing the thickness of the coating as well as enhancing condensate shedding. While further surface structuring may impose an additional heat transfer resistance, the presence of micro-structures eventually reduces the effective condensate-surface intimate interactions with the consequently decreased adhesion and enhanced shedding performance, which is investigated in this work. This is demonstrated by macroscopic and optical microscopy condensation experimental observations paying special attention at the liquid-lubricant and liquid-solid binary interactions at the droplet-LIS interface, which is further supported by a revisited force balance at the droplet triple contact line. Moreover, the occurrence of a condensation-coalescence-shedding regime is quantified for the first time with droplet growth rates one and two orders of magnitude greater than during condensation-coalescence and direct condensation regimes, respectively. Findings presented here are of great importance for the effective design and implementation of LISs via surface structure endowing accurate droplet mobility and control for applications such as anti-icing, self-cleaning, water harvesting, and/or liquid repellent surfaces as well as for condensation heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐沐发布了新的文献求助10
1秒前
1秒前
所所应助pofeng采纳,获得10
1秒前
龙long完成签到 ,获得积分10
2秒前
缓慢的熠彤完成签到,获得积分10
2秒前
3秒前
shiyi完成签到,获得积分10
3秒前
3秒前
姆姆完成签到,获得积分10
4秒前
科研通AI5应助Titi采纳,获得10
4秒前
领导范儿应助hqz采纳,获得10
5秒前
5秒前
anan完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
Owen应助weiweiwu12采纳,获得10
6秒前
7秒前
8秒前
8秒前
yixia222发布了新的文献求助10
8秒前
gtm应助牛奶牛奶采纳,获得30
8秒前
8秒前
suiyi发布了新的文献求助10
9秒前
齐半青完成签到,获得积分10
9秒前
11秒前
11秒前
guositing完成签到,获得积分10
11秒前
Summer完成签到 ,获得积分10
12秒前
到灯塔去发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
打打应助刘金泽采纳,获得10
13秒前
高大道之完成签到,获得积分10
13秒前
耍酷的小土豆完成签到 ,获得积分10
13秒前
泡泡球完成签到,获得积分10
13秒前
juno完成签到,获得积分10
13秒前
13秒前
小马完成签到,获得积分10
14秒前
poorzz完成签到,获得积分10
14秒前
Sevendesu完成签到,获得积分10
14秒前
Qing完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792