已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒洋洋发布了新的文献求助10
2秒前
ypp发布了新的文献求助10
3秒前
多年以后完成签到,获得积分10
5秒前
11111111111123完成签到,获得积分10
6秒前
lsl发布了新的文献求助10
7秒前
7秒前
7秒前
ypp完成签到,获得积分10
8秒前
Lucky完成签到,获得积分10
9秒前
9秒前
浮游应助jijiguo采纳,获得10
11秒前
11秒前
淑欢完成签到,获得积分10
12秒前
12秒前
早早入眠完成签到,获得积分10
13秒前
onmyway完成签到,获得积分10
13秒前
mm完成签到 ,获得积分10
15秒前
EternalStrider完成签到,获得积分10
16秒前
18秒前
情怀应助快乐的小蘑菇采纳,获得30
20秒前
richie发布了新的文献求助30
21秒前
22秒前
大模型应助yyqx采纳,获得10
23秒前
23秒前
BisonHamster发布了新的文献求助10
27秒前
花花发布了新的文献求助10
28秒前
29秒前
科研通AI6应助YJO10采纳,获得10
29秒前
Junex完成签到 ,获得积分10
30秒前
科研通AI6应助BisonHamster采纳,获得10
32秒前
黑巧的融化完成签到 ,获得积分10
32秒前
缓慢的破茧完成签到 ,获得积分10
34秒前
岳小龙完成签到 ,获得积分10
35秒前
richie完成签到,获得积分10
36秒前
zzz发布了新的文献求助10
36秒前
Lijiahui完成签到 ,获得积分10
37秒前
41秒前
hy完成签到 ,获得积分10
41秒前
fantasy发布了新的文献求助10
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525102
关于积分的说明 14100961
捐赠科研通 4438850
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504