Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wanci应助典雅猕猴桃采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
傲娇皮皮虾完成签到 ,获得积分10
2秒前
科目三应助阿苇采纳,获得10
3秒前
深情安青应助王蕊采纳,获得10
4秒前
4秒前
5秒前
愉快寄凡发布了新的文献求助10
5秒前
5秒前
6秒前
Lucas应助原野小年采纳,获得10
6秒前
crystal发布了新的文献求助10
6秒前
mmol完成签到,获得积分10
6秒前
Xian发布了新的文献求助10
6秒前
wanci应助冰冰采纳,获得10
6秒前
kai发布了新的文献求助10
7秒前
7秒前
暖若安阳发布了新的文献求助10
7秒前
毛毛完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
年鱼精发布了新的文献求助10
8秒前
8秒前
花花完成签到,获得积分10
8秒前
清爽觅双完成签到,获得积分10
8秒前
8秒前
Daniel911完成签到,获得积分10
8秒前
FashionBoy应助韩麒嘉采纳,获得10
8秒前
叮当喵发布了新的文献求助10
9秒前
9秒前
合适鲂完成签到,获得积分10
10秒前
顺心紫翠发布了新的文献求助10
10秒前
11秒前
11秒前
572686发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608560
求助须知:如何正确求助?哪些是违规求助? 4693225
关于积分的说明 14877335
捐赠科研通 4717884
什么是DOI,文献DOI怎么找? 2544255
邀请新用户注册赠送积分活动 1509400
关于科研通互助平台的介绍 1472836