亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涤尘完成签到,获得积分10
4秒前
闪闪发布了新的文献求助10
9秒前
冰雪完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
hhq完成签到 ,获得积分10
13秒前
酷波er应助伯克利芙蓉王采纳,获得10
13秒前
Eden完成签到,获得积分10
16秒前
小新完成签到 ,获得积分10
21秒前
小姚姚完成签到,获得积分10
22秒前
英勇明雪完成签到 ,获得积分10
25秒前
30秒前
32秒前
32秒前
遇上就这样吧完成签到,获得积分0
32秒前
dax大雄完成签到 ,获得积分10
35秒前
卡皮巴拉发布了新的文献求助10
35秒前
36秒前
韩国辉发布了新的文献求助10
37秒前
领导范儿应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得20
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
Ava应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
酷波er应助科研通管家采纳,获得10
40秒前
45秒前
可爱的函函应助chcmuer采纳,获得10
46秒前
成就的笑南完成签到 ,获得积分10
48秒前
陈诚1111发布了新的文献求助10
51秒前
Bin发布了新的文献求助10
51秒前
Bin完成签到,获得积分10
1分钟前
1分钟前
qiqi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小巧又菱发布了新的文献求助10
1分钟前
领导范儿应助grata采纳,获得20
1分钟前
韩国辉完成签到,获得积分10
1分钟前
小蘑菇应助Enso采纳,获得10
1分钟前
英姑应助小巧又菱采纳,获得10
1分钟前
思源应助闪闪采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622185
求助须知:如何正确求助?哪些是违规求助? 4707074
关于积分的说明 14938561
捐赠科研通 4768447
什么是DOI,文献DOI怎么找? 2552156
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005