Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿俊发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
细心尔岚发布了新的文献求助10
1秒前
asdfzxcv应助潇洒的月光采纳,获得10
1秒前
2秒前
2秒前
猫会后空翻完成签到 ,获得积分10
3秒前
六尺巷发布了新的文献求助10
4秒前
6秒前
细腻的仙人掌给yar的求助进行了留言
7秒前
乐乐应助游子轩采纳,获得10
7秒前
机智的誉发布了新的文献求助10
7秒前
研友_VZG7GZ应助long采纳,获得10
8秒前
kingnb完成签到,获得积分10
8秒前
8秒前
UP完成签到,获得积分10
8秒前
hp571完成签到,获得积分10
9秒前
眼睛大花生完成签到,获得积分10
10秒前
在水一方应助细心尔岚采纳,获得10
10秒前
小琥同学发布了新的文献求助10
10秒前
10秒前
李健的粉丝团团长应助2327采纳,获得10
10秒前
run完成签到,获得积分20
10秒前
11秒前
11秒前
科研小白完成签到,获得积分10
12秒前
hp571发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
善学以致用应助自由迎曼采纳,获得10
15秒前
英姑应助灵巧的珍采纳,获得10
15秒前
15秒前
无花果应助run采纳,获得10
15秒前
kai发布了新的文献求助10
15秒前
别当真发布了新的文献求助80
16秒前
zy完成签到,获得积分10
16秒前
16秒前
LZH发布了新的文献求助10
17秒前
manman完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513