Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
孙浩发布了新的文献求助10
1秒前
正月初九完成签到,获得积分10
1秒前
陈杰发布了新的文献求助10
2秒前
三金完成签到,获得积分20
3秒前
zyd发布了新的文献求助10
4秒前
gelinhao完成签到,获得积分0
6秒前
量子星尘发布了新的文献求助10
6秒前
ssy发布了新的文献求助10
7秒前
鱼尾猫完成签到,获得积分10
7秒前
魏一一完成签到,获得积分10
8秒前
孙浩完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
PengLin完成签到 ,获得积分10
9秒前
10秒前
大模型应助Morem采纳,获得10
12秒前
zengyan发布了新的文献求助10
12秒前
DijiaXu应助彤光赫显采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
zyd完成签到,获得积分10
18秒前
18秒前
19秒前
mairipaiti发布了新的文献求助10
19秒前
xjcy应助科研通管家采纳,获得10
20秒前
yyyfff应助科研通管家采纳,获得10
20秒前
xjcy应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
自有龙骧完成签到 ,获得积分10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176