Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WT发布了新的文献求助10
1秒前
华仔应助edisondc采纳,获得10
1秒前
2秒前
3秒前
jl发布了新的文献求助10
5秒前
7秒前
9秒前
潇洒以晴完成签到,获得积分10
11秒前
11秒前
oops发布了新的文献求助10
12秒前
13秒前
14秒前
南小琴发布了新的文献求助10
14秒前
AppleDog完成签到,获得积分10
14秒前
MiaJ完成签到 ,获得积分10
15秒前
15秒前
顾矜应助jl采纳,获得10
16秒前
18秒前
NNUsusan发布了新的文献求助10
18秒前
Sun完成签到,获得积分10
19秒前
科研通AI2S应助000采纳,获得10
19秒前
开心就吃猕猴桃完成签到,获得积分10
19秒前
19秒前
19秒前
程博士发布了新的文献求助10
19秒前
武文信完成签到,获得积分10
21秒前
小蘑菇应助阳光的伊采纳,获得10
22秒前
22秒前
田様应助大熊采纳,获得30
23秒前
NNUsusan完成签到,获得积分10
23秒前
蝈蝈发布了新的文献求助30
23秒前
23秒前
24秒前
25秒前
25秒前
Mango完成签到,获得积分10
26秒前
烟花应助yjgao2022采纳,获得30
26秒前
可乐加冰发布了新的文献求助10
26秒前
27秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240