Ergonomically optimized path-planning for industrial human–robot collaboration

运动规划 机器人 路径(计算) 计算机科学 控制工程 工程类 人工智能 程序设计语言
作者
Atieh Merikh Nejadasl,Jihad Achaoui,Ilias El Makrini,Greet Van de Perre,Tom Verstraten,Bram Vanderborght
出处
期刊:The International Journal of Robotics Research [SAGE]
标识
DOI:10.1177/02783649241235670
摘要

This paper focuses on improving the ergonomics of industrial workers. It addresses the critical implications of poor ergonomics, which can lead to musculoskeletal disorders over time. A novel methodology for a path-planning algorithm designed for human–robot collaboration was introduced to tackle this challenge. The algorithm’s essential contribution lies in determining the most ergonomic path for a robot to guide a human’s hand during task execution, facilitating a transition toward an optimized body configuration. The algorithm effectively charts the ergonomic path by adopting a Cartesian path-planning approach and employing the cell decomposition method. The methodology was implemented on a dataset of ten individuals, representing a diverse group of male and female subjects aged between 20 and 35, with one participant being left-handed. The algorithm was applied to three different activities: “stacking an item,” “taking an object from a shelf,” and “assembling an object by sitting over a table.” The results demonstrated a significant improvement in the REBA score (as a measure of ergonomics condition) of the individuals after applying the algorithm. This outcome reinforces the efficacy of the methodology in enhancing the ergonomics of industrial workers. Furthermore, the study compared the performance of A* with three heuristic functions against Dijkstra’s algorithm, aiming to identify the most effective approach for achieving optimal ergonomic paths in human–robot collaboration. The findings revealed that A* with a specific heuristic function surpassed Dijkstra’s algorithm, underscoring its superiority in this context. The findings highlight the potential for optimizing human–robot collaboration and offer practical implications for designing more efficient industrial work environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱芮芮完成签到,获得积分10
刚刚
领导范儿应助xyyt采纳,获得10
刚刚
3秒前
陈锦鲤完成签到 ,获得积分10
3秒前
太叔夜南发布了新的文献求助10
3秒前
5秒前
Lucas应助科研牛马徐某人采纳,获得30
6秒前
椰椰发布了新的文献求助10
7秒前
gstaihn发布了新的文献求助10
7秒前
shinn发布了新的文献求助10
7秒前
7秒前
高兴的台灯关注了科研通微信公众号
9秒前
Lucas应助lulu采纳,获得10
10秒前
12秒前
gstaihn完成签到,获得积分10
13秒前
Yyuan发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
失眠芷蝶发布了新的文献求助10
17秒前
乐乐应助椰椰采纳,获得10
18秒前
18秒前
18秒前
许诺发布了新的文献求助10
19秒前
选课发布了新的文献求助10
20秒前
Bilipear发布了新的文献求助10
20秒前
水1111发布了新的文献求助10
21秒前
LYNB完成签到 ,获得积分10
21秒前
yjxx完成签到,获得积分10
21秒前
可研发布了新的文献求助30
22秒前
22秒前
22秒前
lulu发布了新的文献求助10
22秒前
grmqgq完成签到,获得积分10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
罗非鱼应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679656
求助须知:如何正确求助?哪些是违规求助? 4992557
关于积分的说明 15170404
捐赠科研通 4839503
什么是DOI,文献DOI怎么找? 2593348
邀请新用户注册赠送积分活动 1546505
关于科研通互助平台的介绍 1504594