An Enhanced Nonlinear Energy Sink for Hybrid Bifurcation Passive Mitigation and Energy Harvesting From Aeroelastic Galloping Phenomena

气动弹性 分叉 非线性系统 能量收集 控制理论(社会学) 能量(信号处理) 物理 机械 空气动力学 工程类 计算机科学 控制(管理) 量子力学 人工智能
作者
José Augusto I. da Silva,Leonardo Sanches,Guilhem Michon,Flávio D. Marques
出处
期刊:Journal of Computational and Nonlinear Dynamics [ASME International]
卷期号:19 (4) 被引量:2
标识
DOI:10.1115/1.4064721
摘要

Abstract Galloping is a self-excited vibration problem that structures immersed in fluid flow can experience. Due to its essential nonlinear phenomena, the structure exhibits limit cycle oscillations (LCOs), which, at high levels, can lead to failure of the systems. This work proposes an investigation of electromagnetic-enhanced nonlinear energy sinks (NES-EH) for the hybrid mitigation of aeroelastic LCOs and energy harvesting. The study focuses on a prismatic bluff body with a linear suspension immersed in the airflow, using classical steady nonlinear modeling for aerodynamic loads. The conventional NES approach is adopted, employing cubic stiffness and linear damping. Additionally, a linear electromagnetic transducer is included in the assembly for the energy harvesting process. By combining the method of multiple scales with the Harmonic Balance Method, analytical solutions are derived to characterize the system's dynamics under the influence of the device. The different response domains and their respective boundaries induced by the NES-EH are characterized based on the bifurcation diagrams. Furthermore, a slow invariant manifold (SIM) characterization is presented for each induced response domain, and its significant features are discussed. Parametric studies are carried out based on bifurcation analyses to assess the effect of NES-EH parameters on the galloping system dynamics, which allows for designing the absorber parameters. The electrical resistance is optimized to maximize the harvested power. The optimal design of NES-EH is then compared with classical energy harvesting solutions for the galloping problem. Additionally, a thorough analysis of the Target Energy Transfer phenomenon is performed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fang完成签到 ,获得积分10
刚刚
汉堡包应助zhui采纳,获得10
刚刚
刚刚
万万完成签到,获得积分10
刚刚
sci完成签到,获得积分10
1秒前
1秒前
科研通AI5应助马静雨采纳,获得50
1秒前
Lucas应助酷炫板凳采纳,获得10
1秒前
1秒前
FFFFFFG完成签到,获得积分10
2秒前
完美世界应助0000采纳,获得30
3秒前
rosexu发布了新的文献求助10
3秒前
爆米花应助sv采纳,获得10
3秒前
3秒前
搞怪网络完成签到,获得积分10
5秒前
5秒前
liudiqiu应助lh采纳,获得10
5秒前
命运的X号发布了新的文献求助10
5秒前
5秒前
满座关注了科研通微信公众号
6秒前
FashionBoy应助侦察兵采纳,获得10
6秒前
6秒前
个性尔槐完成签到,获得积分10
6秒前
esdeath完成签到,获得积分10
6秒前
13504544355完成签到 ,获得积分10
6秒前
陶醉的蜜蜂完成签到 ,获得积分10
6秒前
7秒前
坦率井完成签到,获得积分10
7秒前
7秒前
善学以致用应助代萌萌采纳,获得10
7秒前
7秒前
捉迷藏应助tengli采纳,获得10
7秒前
shirleeyeahe发布了新的文献求助10
7秒前
kunny完成签到,获得积分10
7秒前
7秒前
闻声完成签到,获得积分10
7秒前
zqfxc发布了新的文献求助10
9秒前
zhuxl完成签到,获得积分10
10秒前
威康宇宙完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794