Exploring academic influence of algorithms by co-occurrence network based on full-text of academic papers

计算机科学 算法 图书馆学 情报检索
作者
Y. Y. Wang,Chengzhi Zhang,Min Song,S. Kim,Y. J. Ko,Ju Hee Lee
出处
期刊:Aslib journal of information management [Emerald (MCB UP)]
标识
DOI:10.1108/ajim-09-2023-0352
摘要

Purpose In the era of artificial intelligence (AI), algorithms have gained unprecedented importance. Scientific studies have shown that algorithms are frequently mentioned in papers, making mention frequency a classical indicator of their popularity and influence. However, contemporary methods for evaluating influence tend to focus solely on individual algorithms, disregarding the collective impact resulting from the interconnectedness of these algorithms, which can provide a new way to reveal their roles and importance within algorithm clusters. This paper aims to build the co-occurrence network of algorithms in the natural language processing field based on the full-text content of academic papers and analyze the academic influence of algorithms in the group based on the features of the network. Design/methodology/approach We use deep learning models to extract algorithm entities from articles and construct the whole, cumulative and annual co-occurrence networks. We first analyze the characteristics of algorithm networks and then use various centrality metrics to obtain the score and ranking of group influence for each algorithm in the whole domain and each year. Finally, we analyze the influence evolution of different representative algorithms. Findings The results indicate that algorithm networks also have the characteristics of complex networks, with tight connections between nodes developing over approximately four decades. For different algorithms, algorithms that are classic, high-performing and appear at the junctions of different eras can possess high popularity, control, central position and balanced influence in the network. As an algorithm gradually diminishes its sway within the group, it typically loses its core position first, followed by a dwindling association with other algorithms. Originality/value To the best of the authors’ knowledge, this paper is the first large-scale analysis of algorithm networks. The extensive temporal coverage, spanning over four decades of academic publications, ensures the depth and integrity of the network. Our results serve as a cornerstone for constructing multifaceted networks interlinking algorithms, scholars and tasks, facilitating future exploration of their scientific roles and semantic relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lixuerui发布了新的文献求助10
2秒前
ekls完成签到,获得积分10
2秒前
Summer完成签到,获得积分10
2秒前
科研通AI2S应助Asher采纳,获得10
3秒前
4秒前
Strongly完成签到,获得积分10
5秒前
梅子完成签到 ,获得积分10
5秒前
刘敏完成签到 ,获得积分10
5秒前
6秒前
林小夫完成签到,获得积分10
6秒前
66666关注了科研通微信公众号
7秒前
ding应助细心的语蓉采纳,获得100
8秒前
9秒前
Isaac完成签到 ,获得积分10
13秒前
很Cool的CC完成签到,获得积分10
13秒前
13秒前
伈X发布了新的文献求助10
15秒前
xdd完成签到,获得积分10
15秒前
15秒前
高贵芷波发布了新的文献求助10
15秒前
lixuerui完成签到,获得积分10
18秒前
hcq完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
21秒前
hcq发布了新的文献求助10
21秒前
阳光的玉米完成签到,获得积分10
23秒前
蜂蜜发布了新的文献求助10
23秒前
追寻白云发布了新的文献求助10
24秒前
一一发布了新的文献求助50
24秒前
26秒前
细心的语蓉发布了新的文献求助100
26秒前
28秒前
catnipz完成签到,获得积分10
28秒前
阮逸君给阮逸君的求助进行了留言
30秒前
31秒前
坚定涑发布了新的文献求助10
31秒前
micro然发布了新的文献求助10
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168424
求助须知:如何正确求助?哪些是违规求助? 2819735
关于积分的说明 7927737
捐赠科研通 2479653
什么是DOI,文献DOI怎么找? 1321059
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602463