亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring academic influence of algorithms by co-occurrence network based on full-text of academic papers

计算机科学 算法 图书馆学 情报检索
作者
Y. Y. Wang,Chengzhi Zhang,Min Song,S. Kim,Y. J. Ko,Ju Hee Lee
出处
期刊:Aslib journal of information management [Emerald Publishing Limited]
标识
DOI:10.1108/ajim-09-2023-0352
摘要

Purpose In the era of artificial intelligence (AI), algorithms have gained unprecedented importance. Scientific studies have shown that algorithms are frequently mentioned in papers, making mention frequency a classical indicator of their popularity and influence. However, contemporary methods for evaluating influence tend to focus solely on individual algorithms, disregarding the collective impact resulting from the interconnectedness of these algorithms, which can provide a new way to reveal their roles and importance within algorithm clusters. This paper aims to build the co-occurrence network of algorithms in the natural language processing field based on the full-text content of academic papers and analyze the academic influence of algorithms in the group based on the features of the network. Design/methodology/approach We use deep learning models to extract algorithm entities from articles and construct the whole, cumulative and annual co-occurrence networks. We first analyze the characteristics of algorithm networks and then use various centrality metrics to obtain the score and ranking of group influence for each algorithm in the whole domain and each year. Finally, we analyze the influence evolution of different representative algorithms. Findings The results indicate that algorithm networks also have the characteristics of complex networks, with tight connections between nodes developing over approximately four decades. For different algorithms, algorithms that are classic, high-performing and appear at the junctions of different eras can possess high popularity, control, central position and balanced influence in the network. As an algorithm gradually diminishes its sway within the group, it typically loses its core position first, followed by a dwindling association with other algorithms. Originality/value To the best of the authors’ knowledge, this paper is the first large-scale analysis of algorithm networks. The extensive temporal coverage, spanning over four decades of academic publications, ensures the depth and integrity of the network. Our results serve as a cornerstone for constructing multifaceted networks interlinking algorithms, scholars and tasks, facilitating future exploration of their scientific roles and semantic relations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
圆圆完成签到 ,获得积分10
7秒前
美罗培南完成签到,获得积分10
7秒前
烨枫晨曦完成签到,获得积分10
14秒前
AliEmbark完成签到,获得积分10
20秒前
xy完成签到 ,获得积分10
26秒前
葛力发布了新的文献求助10
27秒前
34秒前
活力的驳发布了新的文献求助10
38秒前
传奇3应助活力的驳采纳,获得30
44秒前
无花果应助暮光的加纳采纳,获得10
46秒前
好烦完成签到,获得积分10
47秒前
52秒前
54秒前
57秒前
1分钟前
余甘木发布了新的文献求助10
1分钟前
舒服的吗喽完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xiaoyy完成签到,获得积分10
1分钟前
脑洞疼应助lei采纳,获得10
2分钟前
xiaoyy发布了新的文献求助10
2分钟前
2分钟前
今后应助暮光的加纳采纳,获得10
2分钟前
2分钟前
2分钟前
暮光的加纳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
vicky完成签到 ,获得积分10
2分钟前
与一完成签到 ,获得积分10
3分钟前
xiaozhu完成签到,获得积分10
3分钟前
nnnick完成签到,获得积分0
3分钟前
Jason完成签到 ,获得积分10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069