Exploring academic influence of algorithms by co-occurrence network based on full-text of academic papers

计算机科学 算法 图书馆学 情报检索
作者
Y. Y. Wang,Chengzhi Zhang,Min Song,S. Kim,Y. J. Ko,Ju Hee Lee
出处
期刊:Aslib journal of information management [Emerald (MCB UP)]
标识
DOI:10.1108/ajim-09-2023-0352
摘要

Purpose In the era of artificial intelligence (AI), algorithms have gained unprecedented importance. Scientific studies have shown that algorithms are frequently mentioned in papers, making mention frequency a classical indicator of their popularity and influence. However, contemporary methods for evaluating influence tend to focus solely on individual algorithms, disregarding the collective impact resulting from the interconnectedness of these algorithms, which can provide a new way to reveal their roles and importance within algorithm clusters. This paper aims to build the co-occurrence network of algorithms in the natural language processing field based on the full-text content of academic papers and analyze the academic influence of algorithms in the group based on the features of the network. Design/methodology/approach We use deep learning models to extract algorithm entities from articles and construct the whole, cumulative and annual co-occurrence networks. We first analyze the characteristics of algorithm networks and then use various centrality metrics to obtain the score and ranking of group influence for each algorithm in the whole domain and each year. Finally, we analyze the influence evolution of different representative algorithms. Findings The results indicate that algorithm networks also have the characteristics of complex networks, with tight connections between nodes developing over approximately four decades. For different algorithms, algorithms that are classic, high-performing and appear at the junctions of different eras can possess high popularity, control, central position and balanced influence in the network. As an algorithm gradually diminishes its sway within the group, it typically loses its core position first, followed by a dwindling association with other algorithms. Originality/value To the best of the authors’ knowledge, this paper is the first large-scale analysis of algorithm networks. The extensive temporal coverage, spanning over four decades of academic publications, ensures the depth and integrity of the network. Our results serve as a cornerstone for constructing multifaceted networks interlinking algorithms, scholars and tasks, facilitating future exploration of their scientific roles and semantic relations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗鸯鸯发布了新的文献求助10
刚刚
Scidog完成签到,获得积分0
刚刚
刚刚
桐桐应助凯凯采纳,获得10
刚刚
1秒前
stop here完成签到,获得积分10
2秒前
2秒前
动听的代曼完成签到,获得积分10
2秒前
暴走完成签到 ,获得积分10
2秒前
2秒前
2秒前
彭于晏应助zihailing采纳,获得10
3秒前
西辣蛋粉完成签到,获得积分10
3秒前
3秒前
4秒前
cc发布了新的文献求助10
4秒前
jisnoalia完成签到,获得积分20
4秒前
科目三应助林洛沁采纳,获得10
4秒前
AJ完成签到,获得积分20
4秒前
sunchang应助77采纳,获得10
4秒前
4秒前
冷傲的白卉完成签到,获得积分10
4秒前
机灵若魔发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Zz发布了新的文献求助10
6秒前
微凉完成签到 ,获得积分10
6秒前
6秒前
6秒前
damie完成签到 ,获得积分10
6秒前
KevinT完成签到,获得积分10
6秒前
SHAO应助wer采纳,获得10
6秒前
吕喜梅发布了新的文献求助10
6秒前
CCcc发布了新的文献求助10
7秒前
白白白完成签到,获得积分10
7秒前
hhhhh1完成签到,获得积分10
7秒前
羞涩的文轩完成签到,获得积分10
7秒前
大模型应助追寻听南采纳,获得10
8秒前
雨后初晨发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006