Competing risk model to determine the prognostic factors for patients with gliosarcoma

医学 胶质肉瘤 单变量 单变量分析 比例危险模型 肿瘤科 累积发病率 流行病学 内科学 GSM网络 多元分析 婚姻状况 胶质瘤 多元统计 环境卫生 人口 统计 癌症研究 移植 电信 数学 计算机科学
作者
Mark Chen,Liying Huang,Fang Wang,Xi-Qi Xu,Xiaohong Xu
出处
期刊:World Neurosurgery [Elsevier BV]
标识
DOI:10.1016/j.wneu.2023.12.123
摘要

Gliosarcoma (GSM) is a highly aggressive variant of brain cancer with an extremely unfavorable prognosis. Prognosis is not feasible by traditional methods because of a lack of staging criteria, and the present study aims to screen more detailed demographic factors to predict the prognostic factors of the tumors.For this study, we extracted data of patients diagnosed with GSM from the SEER (Surveillance Epidemiology and End Results) database between 2000 and 2019. To account for the influence of competing risks, we used a Cumulative Incidence Function. Subsequently, univariate analysis was conducted to evaluate the individual variables under investigation. Specifically for patients with GSM, we generated cumulative risk curves for specific mortality outcomes and events related to competing risks. In addition, we used both univariate and multivariate Cox analysis to account for non-GSM-related deaths that may confound our research.The competing risk model showed that age, marital status, tumor size, and adjuvant therapy were prognostic factors in GSM-related death. The analysis results showed that older age (60-70 years, ≥71 years) and larger tumor size (≥5.3 cm) significantly increased the risk of GSM-related death. Conversely, surgical intervention, chemotherapy, and being single were identified as protective factors against GSM-related death.Our study using a competing risk model provided valuable insights into the prognostic factors associated with GSM-related death. Further research and clinical interventions targeted at minimizing these risk factors and promoting the use of protective measures may contribute to improved outcomes and reduced mortality for patients with GSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的仇天完成签到 ,获得积分10
刚刚
刚刚
JamesPei应助阳光刺眼采纳,获得10
1秒前
美满向薇发布了新的文献求助10
4秒前
猪猪hero发布了新的文献求助10
5秒前
mark707完成签到,获得积分10
5秒前
CodeCraft应助我要读博士采纳,获得10
5秒前
领导范儿应助李萌采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
潺潺流水完成签到,获得积分10
6秒前
DDd完成签到 ,获得积分10
6秒前
坚强的曼雁完成签到,获得积分10
8秒前
gapsong完成签到,获得积分10
9秒前
SciGPT应助辣根过氧化物酶采纳,获得10
10秒前
漂亮的冷霜完成签到 ,获得积分10
11秒前
小李发布了新的文献求助10
11秒前
11秒前
聪明静柏完成签到 ,获得积分10
12秒前
13秒前
喵喵完成签到,获得积分20
13秒前
南山无梅落完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
眼睛大的莫英完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
黄坤完成签到,获得积分10
17秒前
18秒前
危机的雍发布了新的文献求助10
19秒前
20秒前
21秒前
海边的卡卡罗特完成签到,获得积分10
21秒前
华仔应助小李采纳,获得10
21秒前
隐形曼青应助霸气的若菱采纳,获得10
22秒前
WY发布了新的文献求助10
23秒前
坦率的夜玉完成签到,获得积分10
23秒前
24秒前
25秒前
111发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911267
求助须知:如何正确求助?哪些是违规求助? 4186820
关于积分的说明 13001311
捐赠科研通 3954578
什么是DOI,文献DOI怎么找? 2168351
邀请新用户注册赠送积分活动 1186772
关于科研通互助平台的介绍 1094177