Competing risk model to determine the prognostic factors for patients with gliosarcoma

医学 胶质肉瘤 单变量 单变量分析 比例危险模型 肿瘤科 累积发病率 流行病学 内科学 GSM网络 多元分析 婚姻状况 胶质瘤 多元统计 环境卫生 人口 统计 癌症研究 电信 计算机科学 数学 移植
作者
Mark Chen,Liying Huang,Fang Wang,Xi-Qi Xu,Xiaohong Xu
出处
期刊:World Neurosurgery [Elsevier]
标识
DOI:10.1016/j.wneu.2023.12.123
摘要

Gliosarcoma (GSM) is a highly aggressive variant of brain cancer with an extremely unfavorable prognosis. Prognosis is not feasible by traditional methods because of a lack of staging criteria, and the present study aims to screen more detailed demographic factors to predict the prognostic factors of the tumors.For this study, we extracted data of patients diagnosed with GSM from the SEER (Surveillance Epidemiology and End Results) database between 2000 and 2019. To account for the influence of competing risks, we used a Cumulative Incidence Function. Subsequently, univariate analysis was conducted to evaluate the individual variables under investigation. Specifically for patients with GSM, we generated cumulative risk curves for specific mortality outcomes and events related to competing risks. In addition, we used both univariate and multivariate Cox analysis to account for non-GSM-related deaths that may confound our research.The competing risk model showed that age, marital status, tumor size, and adjuvant therapy were prognostic factors in GSM-related death. The analysis results showed that older age (60-70 years, ≥71 years) and larger tumor size (≥5.3 cm) significantly increased the risk of GSM-related death. Conversely, surgical intervention, chemotherapy, and being single were identified as protective factors against GSM-related death.Our study using a competing risk model provided valuable insights into the prognostic factors associated with GSM-related death. Further research and clinical interventions targeted at minimizing these risk factors and promoting the use of protective measures may contribute to improved outcomes and reduced mortality for patients with GSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqqqqy完成签到,获得积分10
1秒前
1秒前
1秒前
华仔应助王焕玉采纳,获得10
1秒前
顾矜应助hubanj采纳,获得30
2秒前
旺旺大礼包完成签到,获得积分10
2秒前
HYH发布了新的文献求助10
3秒前
爱笑的蛟凤完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
siyu完成签到,获得积分10
6秒前
6秒前
6秒前
avalanche应助李嘉图的栗子采纳,获得50
6秒前
7秒前
我们发布了新的文献求助10
7秒前
7秒前
7秒前
情怀应助Huan采纳,获得10
7秒前
8秒前
dd36发布了新的文献求助10
8秒前
chengmin发布了新的文献求助10
8秒前
8秒前
wu发布了新的文献求助10
8秒前
司空元正发布了新的文献求助10
9秒前
10秒前
天空之下完成签到,获得积分10
10秒前
刘欣悦完成签到 ,获得积分10
11秒前
一一发布了新的文献求助10
11秒前
siyu发布了新的文献求助10
11秒前
唯意完成签到,获得积分10
12秒前
12秒前
赤道永恒完成签到,获得积分10
12秒前
13秒前
顾城浪子完成签到,获得积分10
13秒前
wu完成签到,获得积分10
14秒前
生动路人发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939