Competing risk model to determine the prognostic factors for patients with gliosarcoma

医学 胶质肉瘤 单变量 单变量分析 比例危险模型 肿瘤科 累积发病率 流行病学 内科学 GSM网络 多元分析 婚姻状况 胶质瘤 多元统计 环境卫生 人口 统计 癌症研究 移植 电信 数学 计算机科学
作者
Mark Chen,Liying Huang,Fang Wang,Xi-Qi Xu,Xiaohong Xu
出处
期刊:World Neurosurgery [Elsevier]
标识
DOI:10.1016/j.wneu.2023.12.123
摘要

Gliosarcoma (GSM) is a highly aggressive variant of brain cancer with an extremely unfavorable prognosis. Prognosis is not feasible by traditional methods because of a lack of staging criteria, and the present study aims to screen more detailed demographic factors to predict the prognostic factors of the tumors.For this study, we extracted data of patients diagnosed with GSM from the SEER (Surveillance Epidemiology and End Results) database between 2000 and 2019. To account for the influence of competing risks, we used a Cumulative Incidence Function. Subsequently, univariate analysis was conducted to evaluate the individual variables under investigation. Specifically for patients with GSM, we generated cumulative risk curves for specific mortality outcomes and events related to competing risks. In addition, we used both univariate and multivariate Cox analysis to account for non-GSM-related deaths that may confound our research.The competing risk model showed that age, marital status, tumor size, and adjuvant therapy were prognostic factors in GSM-related death. The analysis results showed that older age (60-70 years, ≥71 years) and larger tumor size (≥5.3 cm) significantly increased the risk of GSM-related death. Conversely, surgical intervention, chemotherapy, and being single were identified as protective factors against GSM-related death.Our study using a competing risk model provided valuable insights into the prognostic factors associated with GSM-related death. Further research and clinical interventions targeted at minimizing these risk factors and promoting the use of protective measures may contribute to improved outcomes and reduced mortality for patients with GSM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万事顺意完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
哈哈哈发布了新的文献求助10
1秒前
满意雪碧完成签到,获得积分10
2秒前
3秒前
爆裂水龙头应助研友_5Y9775采纳,获得10
3秒前
elf完成签到,获得积分10
4秒前
停停走走发布了新的文献求助10
4秒前
rust发布了新的文献求助20
4秒前
自觉子默完成签到,获得积分10
4秒前
WWW完成签到,获得积分10
5秒前
5秒前
pluto应助靓丽的熠彤采纳,获得10
6秒前
小白完成签到,获得积分20
6秒前
在水一方应助追风采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
jerry发布了新的文献求助10
7秒前
李健应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
7秒前
CCCheny应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
smottom应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775286
求助须知:如何正确求助?哪些是违规求助? 5623037
关于积分的说明 15438234
捐赠科研通 4907576
什么是DOI,文献DOI怎么找? 2640794
邀请新用户注册赠送积分活动 1588636
关于科研通互助平台的介绍 1543521