Competing risk model to determine the prognostic factors for patients with gliosarcoma

医学 胶质肉瘤 单变量 单变量分析 比例危险模型 肿瘤科 累积发病率 流行病学 内科学 GSM网络 多元分析 婚姻状况 胶质瘤 多元统计 环境卫生 人口 统计 癌症研究 移植 电信 数学 计算机科学
作者
Mark Chen,Liying Huang,Fang Wang,Xi-Qi Xu,Xiaohong Xu
出处
期刊:World Neurosurgery [Elsevier]
标识
DOI:10.1016/j.wneu.2023.12.123
摘要

Gliosarcoma (GSM) is a highly aggressive variant of brain cancer with an extremely unfavorable prognosis. Prognosis is not feasible by traditional methods because of a lack of staging criteria, and the present study aims to screen more detailed demographic factors to predict the prognostic factors of the tumors.For this study, we extracted data of patients diagnosed with GSM from the SEER (Surveillance Epidemiology and End Results) database between 2000 and 2019. To account for the influence of competing risks, we used a Cumulative Incidence Function. Subsequently, univariate analysis was conducted to evaluate the individual variables under investigation. Specifically for patients with GSM, we generated cumulative risk curves for specific mortality outcomes and events related to competing risks. In addition, we used both univariate and multivariate Cox analysis to account for non-GSM-related deaths that may confound our research.The competing risk model showed that age, marital status, tumor size, and adjuvant therapy were prognostic factors in GSM-related death. The analysis results showed that older age (60-70 years, ≥71 years) and larger tumor size (≥5.3 cm) significantly increased the risk of GSM-related death. Conversely, surgical intervention, chemotherapy, and being single were identified as protective factors against GSM-related death.Our study using a competing risk model provided valuable insights into the prognostic factors associated with GSM-related death. Further research and clinical interventions targeted at minimizing these risk factors and promoting the use of protective measures may contribute to improved outcomes and reduced mortality for patients with GSM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhh_ooo完成签到,获得积分10
刚刚
杨超肥发布了新的文献求助10
刚刚
1秒前
aaa发布了新的文献求助10
2秒前
2秒前
23发布了新的文献求助10
2秒前
2秒前
三方完成签到,获得积分10
3秒前
bing完成签到 ,获得积分10
3秒前
AdamHoalcraft完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助hihi采纳,获得10
4秒前
李健应助出海流浪采纳,获得10
5秒前
橙汁完成签到,获得积分10
5秒前
fyjlfy完成签到 ,获得积分10
5秒前
Freedom完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
大模型应助23采纳,获得10
6秒前
7秒前
害羞山菡发布了新的文献求助10
7秒前
饱满的皮皮虾完成签到,获得积分10
8秒前
8秒前
姜雪莲完成签到,获得积分10
10秒前
MF完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
YX1994发布了新的文献求助30
12秒前
这一天完成签到,获得积分10
13秒前
13秒前
NexusExplorer应助飞翔荷兰人采纳,获得10
14秒前
14秒前
CH完成签到,获得积分10
15秒前
单于无极完成签到,获得积分10
15秒前
16秒前
16秒前
Lutras完成签到,获得积分10
16秒前
得得祎祎完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Lutras发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717803
求助须知:如何正确求助?哪些是违规求助? 5248178
关于积分的说明 15283201
捐赠科研通 4867942
什么是DOI,文献DOI怎么找? 2613926
邀请新用户注册赠送积分活动 1563847
关于科研通互助平台的介绍 1521332