79 Continuous Theta Burst Stimulation (cTBS) over the Inferior Parietal Cortex Decreases Default Mode Connectivity and Improves Overnight Sleep in People with Insomnia

CTB公司 默认模式网络 磁刺激 多导睡眠图 清醒 刺激 功能磁共振成像 医学 心理学 失眠症 听力学 睡眠开始 唤醒 静息状态功能磁共振成像 非快速眼动睡眠 神经科学 麻醉 精神科 脑电图 初级运动皮层
作者
William D. S. Killgore,Samantha Jankowski,Kymberly Henderson-Arredondo,Christopher Trapani,Heidi Elledge,Daniel Lucas,Andrew Le,Emmett Suckow,Lindsey Hildebrand,Michelle R. Persich,Brianna Zahorecz,Cohelly Salazar,Tyler Watson,Camryn Wellman,Deva Reign,Yu-Chin Chen,Ying‐hui Chou,Natalie S. Dailey
出处
期刊:Journal of The International Neuropsychological Society [Cambridge University Press]
卷期号:29 (s1): 587-588
标识
DOI:10.1017/s1355617723007506
摘要

Objective: Chronic insomnia is a highly prevalent disorder affecting approximately one-in-three Americans. Insomnia is associated with increased cognitive and brain arousal. Compared to healthy individuals, those with insomnia tend to show greater activation/connectivity within the default mode network (DMN) of the brain, consistent with the hyperarousal theory. We investigated whether it would be possible to suppress activation of the DMN to improve sleep using a type of repetitive transcranial magnetic stimulation (rTMS) known as continuous theta burst stimulation (cTBS). Participants and Methods: Participants (n=9, 6 female; age=25.4, SD=5.9 years) meeting criteria for insomnia/sleep disorder on standardized scales completed a counterbalanced sham-controlled crossover design in which they served as their own controls on two separate nights of laboratory monitored sleep on separate weeks. Each session included two resting state functional magnetic resonance imaging (fMRI) sessions separated by a brief rTMS session. Stimulation involved a 40 second cTBS stimulation train applied over an easily accessible cortical surface node of the DMN located at the left inferior parietal lobe. After scanning/stimulation, the participant was escorted to an isolated sleep laboratory bedroom, fitted with polysomnography (PSG) electrodes, and allowed an 8-hour sleep opportunity from 2300 to 0700. PSG was monitored continuously and scored for standard outcomes, including total sleep time (TST), percentage of time various sleep stages, and number of arousals. Results: Consistent with our hypothesis, a single session of active cTBS produced a significant reduction of functional connectivity (p < .05, FDR corrected) within the DMN. In contrast, the sham condition produced no changes in functional connectivity from pre- to post-treatment. Furthermore, after controlling for age, we also found that the active treatment was associated with meaningful trends toward greater overnight improvements in sleep compared to the sham condition. First, the active cTBS condition was associated with significantly greater TST compared to sham (F(1,7)=14.19, p=.007, partial eta-squared=.67). Overall, individuals obtained 26.5 minutes more sleep on the nights that they received the active cTBS compared to the sham condition. Moreover, the active cTBS condition was associated with a significant increase in the percentage of time in rapid eye movement (REM%) sleep compared to the sham condition (F(1,7)=7.05, p=.033, partial eta-squared=.50), which was significant after controlling for age. Overall, active treatment was associated with an increase of 6.76% more of total sleep time in REM compared to sham treatment. Finally, active cTBS was associated with fewer arousals from sleep (t(8) = -1.84, p = .051, d = .61), with an average of 15.1 fewer arousals throughout the night than sham. Conclusions: Overall, these findings suggest that this simple and brief cTBS approach can alter DMN brain functioning in the expected direction and was associated with trends toward improved objectively measured sleep, including increased TST and REM% and fewer arousals during the night following stimulation. These findings emerged after only a single 40-second treatment, and it remains to be seen whether multiple treatments over several days or weeks can sustain or even improve upon these outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sak完成签到,获得积分10
1秒前
Shuo Yang发布了新的文献求助20
1秒前
呜呜呜呜发布了新的文献求助10
1秒前
在水一方应助hhzz采纳,获得10
1秒前
旧是完成签到 ,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
杨小胖完成签到 ,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
shouyu29应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
归海含烟完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
shire应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
匹诺曹发布了新的文献求助10
5秒前
唐画完成签到 ,获得积分10
5秒前
5秒前
5秒前
淡淡采白关注了科研通微信公众号
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808