量子点
材料科学
电化学
阳极
兴奋剂
电导率
碳纤维
钠离子电池
吸附
离子
纳米技术
分析化学(期刊)
电极
物理化学
光电子学
化学
有机化学
复合材料
法拉第效率
复合数
作者
Baolin Liu,Yizhao Li,Hongyu Zhang,Shiqiang Wang,Huijun Song,Chun Yuan,Xinxin Yin,Zhenjiang Lu,Jindou Hu,Jing Xie,Yali Cao
出处
期刊:Small
[Wiley]
日期:2023-12-28
卷期号:20 (23)
被引量:2
标识
DOI:10.1002/smll.202307771
摘要
Abstract Constructing quantum dot‐scale metal sulfides with defects and strongly coupled with carbon is significant for advanced sodium‐ion batteries (SIBs). Herein, Se substituted V 3 S 4 quantum dots with anionic defects confined in nitrogen‐doped carbon matrix (V 3 S 4−x Se x /NC) are fabricated. Introducing element Se into V 3 S 4 crystal expands the interlayer distance of V 3 S 4 , and triggers anionic defects, which can facilitate Na + diffusions and act as active sites for Na + storage. Meanwhile, the quantum dots tightly encapsulated by conductive carbon framework improve the stability and conductivity of the electrode. Theoretical calculations also unveil that the presence of Se enhances the conductivity and Na + adsorption ability of V 3 S 4−x Se x . These properties contribute to the V 3 S 4−x Se x /NC with high specific capacity of 447 mAh g −1 at 0.2 A g −1 , and prominent rate and cyclic performance with 504 mAh g −1 after 1000 cycles at 10 A g −1 . The sodium‐ion hybrid capacitors (SIHCs) with V 3 S 4−x Se x /NC anode and activated carbon cathode can achieve high energy/power density (maximum 144 Wh kg −1 /5960 W kg −1 ), capacity retention ratio of 71% after 4000 cycles at 2 A g −1 . This work not only synthesizes V 3 S 4−x Se x /NC, but also provides a promising opportunity for designing quantum dots and utilizing defects to improve the electrochemical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI