Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast-Charging Performance of SiO-Based Anode for Lithium-Ion Batteries

材料科学 阳极 导电体 扩散阻挡层 电解质 拉曼光谱 电极 纳米技术 化学物理 复合材料 化学 光学 物理 物理化学 图层(电子)
作者
Ruirui Zhang,Zhexi Xiao,Zhenkang Lin,Xinghao Yan,Ziying He,Hairong Jiang,Zhou Yang,Xilai Jia,Fei Wei
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1) 被引量:32
标识
DOI:10.1007/s40820-023-01267-3
摘要

Influence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier. The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling. Progress in the fast charging of high-capacity silicon monoxide (SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion. The construction of an interface conductive network effectively addresses the aforementioned problems; however, the impact of its quality on lithium-ion transfer and structure durability is yet to be explored. Herein, the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. 2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier. Furthermore, atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network, which is critical to the linear reduction of electrode residual stress. This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴完成签到 ,获得积分10
刚刚
碧琴发布了新的文献求助10
刚刚
大聪明完成签到,获得积分10
刚刚
科目三应助伊尔采纳,获得10
刚刚
酷酷元风完成签到,获得积分10
刚刚
1秒前
2秒前
玻璃外的世界完成签到,获得积分10
2秒前
边缘选手发布了新的文献求助10
2秒前
时雨完成签到,获得积分10
2秒前
JamesPei应助杨羕采纳,获得10
2秒前
2秒前
爱听歌的大地完成签到 ,获得积分10
3秒前
3秒前
naki完成签到,获得积分10
3秒前
hismeng发布了新的文献求助20
3秒前
清新王老吉完成签到,获得积分10
3秒前
橙陈陈完成签到,获得积分10
3秒前
4秒前
孤单不如流浪完成签到,获得积分10
4秒前
牧水之完成签到 ,获得积分10
5秒前
杨颖完成签到,获得积分10
5秒前
柳贯一发布了新的文献求助30
5秒前
God完成签到,获得积分10
6秒前
香蕉觅云应助现实的一天采纳,获得10
6秒前
6秒前
山月系晚星完成签到,获得积分10
7秒前
花火易逝发布了新的文献求助10
7秒前
茉行完成签到,获得积分10
7秒前
7秒前
8秒前
关于我发布了新的文献求助10
8秒前
平凡完成签到,获得积分10
8秒前
魏你大爷完成签到,获得积分10
8秒前
莴苣完成签到,获得积分10
9秒前
wxf完成签到,获得积分10
9秒前
9秒前
过时的沛槐完成签到,获得积分10
9秒前
9秒前
科研通AI6应助碧琴采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977