Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast-Charging Performance of SiO-Based Anode for Lithium-Ion Batteries

材料科学 阳极 导电体 扩散阻挡层 电解质 拉曼光谱 电极 纳米技术 化学物理 复合材料 化学 光学 物理 物理化学 图层(电子)
作者
Ruirui Zhang,Zhexi Xiao,Zhenkang Lin,Xinghao Yan,Ziying He,Hairong Jiang,Zhou Yang,Xilai Jia,Fei Wei
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1) 被引量:6
标识
DOI:10.1007/s40820-023-01267-3
摘要

Highlights Influence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier. The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling. Abstract Progress in the fast charging of high-capacity silicon monoxide (SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion. The construction of an interface conductive network effectively addresses the aforementioned problems; however, the impact of its quality on lithium-ion transfer and structure durability is yet to be explored. Herein, the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. 2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier. Furthermore, atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network, which is critical to the linear reduction of electrode residual stress. This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猛犸象发布了新的文献求助10
1秒前
hh完成签到,获得积分10
1秒前
2秒前
stop here发布了新的文献求助10
2秒前
pi发布了新的文献求助10
3秒前
科研66666发布了新的文献求助10
6秒前
sk夏冰完成签到 ,获得积分10
6秒前
LINbiaozhi完成签到,获得积分10
6秒前
斯文千柳完成签到,获得积分20
7秒前
hhh发布了新的文献求助10
8秒前
MiaJ完成签到 ,获得积分10
8秒前
we完成签到,获得积分10
9秒前
10秒前
10秒前
无心的怜烟完成签到,获得积分10
11秒前
星辰大海应助怡然酬海采纳,获得20
11秒前
12秒前
迅速的仰完成签到,获得积分10
12秒前
13秒前
洋子完成签到 ,获得积分10
14秒前
echo发布了新的文献求助10
14秒前
14秒前
14秒前
爆米花应助hhh采纳,获得10
15秒前
昏睡的春天完成签到,获得积分10
16秒前
young完成签到,获得积分10
16秒前
17秒前
17秒前
玄音发布了新的文献求助10
17秒前
凳子琪完成签到,获得积分10
18秒前
存在发布了新的文献求助10
19秒前
913完成签到,获得积分10
19秒前
马思唯发布了新的文献求助10
19秒前
感动语蝶发布了新的文献求助20
19秒前
111发布了新的文献求助10
20秒前
矮小的笑槐完成签到,获得积分10
21秒前
11完成签到,获得积分10
21秒前
22秒前
mhx发布了新的文献求助10
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847