A study on adsorption, dissociation, penetration, and diffusion of nitrogen on and in α-Ti via First-principles calculations

离解(化学) 吸附 分子 扩散阻挡层 化学 表面扩散 化学物理 扩散 活化能 粘着系数 Atom(片上系统) 扩散过程 物理化学 计算化学 热力学 图层(电子) 解吸 嵌入式系统 物理 有机化学 知识管理 计算机科学 创新扩散
作者
Wangpeng Wu,Guangrui Xie,Lei Sun,Yang Yang,Huanhuan Hong,Shihong Zhang,Dongyang Li
出处
期刊:Vacuum [Elsevier BV]
卷期号:221: 112856-112856 被引量:5
标识
DOI:10.1016/j.vacuum.2023.112856
摘要

A comprehensive description of the entire process of N2 molecules on Ti surface and in Ti bulk as well as the underlying nitridation mechanism were explored via first-principles calculations. The reaction process was divided into four steps and the mechanism for the determined reaction path was analyzed. Utilizing the methodology of the climbing image nudged elastic band (CI-NEB), we investigated the diffusion energy barrier at each step of the reaction path, and determined the minimum energy path (MEP) for the complete reaction path. The calculated adsorption energies of N atoms and N2 molecules show that they are most stable at the HCP site on the α-Ti (0001) surface. Charge transfer provided theoretical support for N2 dissociation. We calculated the diffusion energy barrier of the N atom by migrating from the HCP site to the octahedral (O) site, which the N atom prefers to occupy. The diffusion coefficient is highest when the diffusion channel travels from one O site to the next layer of the O site via the next H site, it takes the most energy to complete, compared to those other steps. Lastly, we determined the rate-determining steps of the reaction pathway for the entire nitridation process. This study provides valuable insight into the fundamental mechanisms governing the nitridation process of N2 molecules in titanium alloys. This study sheds light on the nitridation mechanism for N2 molecules in titanium alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
olia发布了新的文献求助10
1秒前
Candice应助孤独树叶采纳,获得10
2秒前
YUJIALING完成签到 ,获得积分10
2秒前
酷波er应助tdtk采纳,获得10
2秒前
冰冰完成签到 ,获得积分20
3秒前
3秒前
3秒前
胡桃夹子发布了新的文献求助30
3秒前
4秒前
syxz0628发布了新的文献求助10
4秒前
都可以完成签到,获得积分10
4秒前
科研通AI5应助qfchen0716网易采纳,获得10
5秒前
JamesPei应助qfchen0716网易采纳,获得10
5秒前
丘比特应助qfchen0716网易采纳,获得10
5秒前
子川发布了新的文献求助10
5秒前
田様应助qfchen0716网易采纳,获得10
5秒前
科目三应助qfchen0716网易采纳,获得10
6秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
6秒前
rr发布了新的文献求助10
6秒前
科目三应助qfchen0716网易采纳,获得10
6秒前
Orange应助qfchen0716网易采纳,获得10
6秒前
FashionBoy应助qfchen0716网易采纳,获得10
6秒前
今后应助qfchen0716网易采纳,获得10
6秒前
汉堡包应助Rober采纳,获得10
6秒前
7秒前
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
张大旭77发布了新的文献求助10
10秒前
12秒前
科研通AI5应助感动苡采纳,获得10
13秒前
雪山大地完成签到,获得积分10
13秒前
Beton_X发布了新的文献求助40
14秒前
15秒前
15秒前
嘿嘿嘿发布了新的文献求助10
15秒前
15秒前
16秒前
小肥鑫发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676