A Hybrid Data‐Driven and Data Assimilation Method for Spatiotemporal Forecasting: PM2.5 Forecasting in China

数据同化 计算机科学 集合卡尔曼滤波器 卡尔曼滤波器 数据挖掘 机器学习 人工智能 气象学 扩展卡尔曼滤波器 物理
作者
Shengjuan Cai,F. Fang,Xiao Tang,Jiang Zhu,Yanghua Wang
出处
期刊:Journal of Advances in Modeling Earth Systems [Wiley]
卷期号:16 (2) 被引量:2
标识
DOI:10.1029/2023ms003789
摘要

Abstract Spatiotemporal forecasting involves generating temporal forecasts for system state variables across spatial regions. Data‐driven methods such as Convolutional Long Short‐Term Memory (ConvLSTM) are effective in capturing both spatial and temporal correlations, but they suffer from error accumulation and accuracy loss as forecasting time increases due to the nonlinearity and uncertainty in physical processes. To address this issue, we propose to combine data‐driven and data assimilation (DA) methods for spatiotemporal forecasting. The accuracy of the data‐driven ConvLSTM model can be improved by periodically assimilating real‐time observations using the ensemble Kalman filter (EnKF) approach. This proposed hybrid ConvLSTM‐EnKF method is demonstrated through PM2.5 forecasting in China, which is a challenging task due to the complexity of topographical and meteorological conditions in the region, the need for high‐resolution forecasting over a large study area, and the scarcity of observations. The results show that the ConvLSTM‐EnKF method outperforms conventional methods and can provide satisfactory operational PM2.5 forecasts for up to 1 month with spatially averaged RMSE below 20 μg/m 3 and correlation coefficient ( R ) above 0.8. In addition, the ConvLSTM‐EnKF method shows a substantial reduction in CPU time when compared to the commonly used NAQPMS‐EnKF method, up to three orders of magnitude. Overall, the use of data‐driven models provides efficient forecasts and speeds up DA. This hybrid ConvLSTM‐EnKF is a novel operational forecasting technique for spatiotemporal forecasting and is used in real spatiotemporal forecasting for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣椒发布了新的文献求助10
1秒前
妮妮完成签到,获得积分10
1秒前
2秒前
小欧文发布了新的文献求助10
4秒前
zzh完成签到,获得积分10
4秒前
zzk发布了新的文献求助10
4秒前
华仔应助小giao吃不饱采纳,获得10
5秒前
碗碗完成签到,获得积分20
6秒前
6秒前
紫色奶萨完成签到,获得积分10
9秒前
赘婿应助hesongwen采纳,获得10
9秒前
香蕉觅云应助刘洪均采纳,获得10
10秒前
jdx完成签到 ,获得积分10
10秒前
wali完成签到 ,获得积分0
10秒前
10秒前
sci完成签到,获得积分10
12秒前
hewu完成签到,获得积分10
12秒前
虚幻哦哦发布了新的文献求助10
12秒前
111发布了新的文献求助10
16秒前
17秒前
熊猫发布了新的文献求助20
18秒前
18秒前
FashionBoy应助庆qing采纳,获得10
19秒前
jfaioe完成签到,获得积分10
20秒前
llzuo完成签到,获得积分20
20秒前
生动的鹰发布了新的文献求助10
21秒前
聪慧海蓝完成签到 ,获得积分10
22秒前
祁代芙发布了新的文献求助20
23秒前
动人的cc发布了新的文献求助10
23秒前
田様应助自闭鹏采纳,获得10
24秒前
25秒前
26秒前
善学以致用应助babao采纳,获得10
27秒前
111完成签到,获得积分20
27秒前
27秒前
刘洪均发布了新的文献求助10
29秒前
34秒前
35秒前
wen发布了新的文献求助10
36秒前
不将就发布了新的文献求助50
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464