Beyond Hospital-Level Aggregated Data

人员配备 背景(考古学) 医学 急症护理 单位(环理论) 医疗保健 医疗急救 护理部 急诊医学 心理学 古生物学 数学教育 经济 生物 经济增长
作者
Christine Yang,Mark Kuebeler,Ruhong Jiang,Melissa K. Knox,Janine J. Wong,Paras Mehta,Lynette E. Dorsey,Laura A. Petersen
出处
期刊:Medical Care [Ovid Technologies (Wolters Kluwer)]
卷期号:62 (3): 189-195
标识
DOI:10.1097/mlr.0000000000001972
摘要

Background: Studies of nurse staffing frequently use data aggregated at the hospital level that do not provide the appropriate context to inform unit-level decisions, such as nurse staffing. Objectives: Describe a method to link patient data collected during the provision of routine care and recorded in the electronic health record (EHR) to the nursing units where care occurred in a national dataset. Research Design: We identified all Veterans Health Administration acute care hospitalizations in the calendar year 2019 nationwide. We linked patient-level EHR and bar code medication administration data to nursing units using a crosswalk. We divided hospitalizations into segments based on the patient’s time-stamped location (ward stays). We calculated the number of ward stays and medication administrations linked to a nursing unit and the unit-level and facility-level mean patient risk scores. Results: We extracted data on 1117 nursing units, 3782 EHR patient locations associated with 1,137,391 ward stays, and 67,772 bar code medication administration locations associated with 147,686,996 medication administrations across 125 Veterans Health Administration facilities. We linked 89.46% of ward stays and 93.10% of medication administrations to a nursing unit. The average (standard deviation) unit-level patient severity across all facilities is 4.71 (1.52), versus 4.53 (0.88) at the facility level. Conclusions: Identification of units is indispensable for using EHR data to understand unit-level phenomena in nursing research and can provide the context-specific information needed by managers making frontline decisions about staffing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
药学牛马完成签到,获得积分10
刚刚
张zi发布了新的文献求助10
1秒前
yatou5651发布了新的文献求助10
2秒前
2秒前
小魏不学无术完成签到,获得积分10
2秒前
木棉发布了新的文献求助10
2秒前
A1234发布了新的文献求助10
3秒前
英俊的铭应助弄井采纳,获得30
3秒前
小二郎应助Dean采纳,获得10
4秒前
故意的冰淇淋完成签到 ,获得积分10
4秒前
4秒前
远方完成签到,获得积分10
5秒前
kiminonawa完成签到,获得积分0
6秒前
zrz完成签到,获得积分10
6秒前
7秒前
传奇3应助morlison采纳,获得10
7秒前
10秒前
10秒前
11秒前
12秒前
乐呀完成签到,获得积分10
12秒前
木头人呐完成签到 ,获得积分10
12秒前
小马甲应助吴岳采纳,获得10
12秒前
天天向上赶完成签到,获得积分10
12秒前
整齐的凡梦完成签到,获得积分10
13秒前
孙冉冉发布了新的文献求助10
14秒前
MHB应助towerman采纳,获得10
15秒前
Dean发布了新的文献求助10
15秒前
16秒前
加油加油发布了新的文献求助10
16秒前
lili完成签到 ,获得积分10
17秒前
文剑武书生完成签到,获得积分10
18秒前
科研通AI5应助无限鞅采纳,获得10
18秒前
18秒前
852应助木棉采纳,获得10
18秒前
19秒前
卓哥完成签到,获得积分10
20秒前
21秒前
Agan发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808