Microstructure and characteristics of Cu-W composite prepared by W-coated Cu powder with different W contents

材料科学 微观结构 复合数 放电等离子烧结 极限抗拉强度 烧结 粒径 粒度 复合材料 纳米颗粒 电阻率和电导率 晶粒生长 分析化学(期刊) 冶金 化学工程 纳米技术 化学 电气工程 色谱法 工程类
作者
Xiuqing Li,Qi Wang,Shizhong Wei,Wenpeng Lou,Liujie Xu,Yucheng Zhou
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:892: 146090-146090 被引量:10
标识
DOI:10.1016/j.msea.2024.146090
摘要

In this study, nanometer W particles were added to Cu matrix as reinforcement phase, aiming to maintain the excellent electrical conductivity of Cu matrix while significantly improving the mechanical performance of Cu-W composite. Cu-W composite powder with W nanoparticle coated Cu was prepared after spray drying and two-step hydrogen reduction. Cu-W composite with different W contents (0 wt%, 5 wt%, 10 wt%, and 20 wt%) were fabricated by spark plasma sintering (SPS). The coating structure can refine Cu particle size and inhibit Cu grain growth during sintering. The impact of W nanoparticles on microstructure, physical and mechanical performance of Cu-W composite was studied. The average size of the W particles dispersed in Cu matrix ranged from 71.89 nm to 106.90 nm. Electron back-scatter diffraction (EBSD) statistics indicated that Cu-5 wt%W, Cu-10 wt%W, and Cu-20 wt%W composite had a mean grain size of 0.76 μm, 0.71 μm, and 0.57 μm, respectively. Cu-20 wt%W composite had a uniform W network-Cu pool structure. The room-temperature tensile strength of Cu-20 wt%W composite was up to 421.98 MPa, with an elongation of 10.91 %; and the room-temperature compressive yield strength reached 313.83 MPa, an increase of 71.76 % compared to pure Cu. Although adding W nanoparticles caused the decrease of electrical conductivity, the conductivity of all Cu-W samples exceeded 81 %. The (111) of Cu and (110) of W showed a semi-coherent relationship with a calculated mismatch parameter δ of 0.077 and good interfacial bonding. The strength of Cu-W composite was improved by the pinning effect of W nanoparticles as a result of the combined effect of fine grain and dispersion strengthening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
妙奇发布了新的文献求助10
1秒前
DuduWang完成签到,获得积分10
1秒前
1秒前
2秒前
爆米花应助vcccc采纳,获得10
2秒前
小乔同学发布了新的文献求助10
2秒前
2秒前
FashionBoy应助疲惫窝窝头采纳,获得10
2秒前
南昌黑人完成签到,获得积分10
2秒前
3秒前
善学以致用应助杆杆采纳,获得10
5秒前
dan完成签到,获得积分10
5秒前
天天快乐应助斯文的傲珊采纳,获得10
5秒前
灵巧谷芹发布了新的文献求助10
6秒前
yudandan@CJLU发布了新的文献求助10
6秒前
paulmichael完成签到,获得积分10
6秒前
科研通AI6应助坦率代珊采纳,获得10
7秒前
潇洒映冬发布了新的文献求助10
7秒前
开心的雁芙完成签到,获得积分10
7秒前
wxy发布了新的文献求助10
8秒前
李健应助陈cc采纳,获得10
8秒前
8秒前
Akim应助杨雨婷采纳,获得10
11秒前
大气的煎饼完成签到 ,获得积分10
11秒前
11秒前
11秒前
Lucas应助小小采纳,获得10
12秒前
oops发布了新的文献求助10
13秒前
14秒前
lxz完成签到,获得积分10
14秒前
14秒前
听宇完成签到,获得积分20
15秒前
灵巧谷芹完成签到,获得积分20
15秒前
听闻完成签到 ,获得积分10
15秒前
redstone发布了新的文献求助10
18秒前
18秒前
可爱的函函应助wxy采纳,获得10
18秒前
Jessica发布了新的文献求助10
18秒前
殷启维发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431130
求助须知:如何正确求助?哪些是违规求助? 4544274
关于积分的说明 14191498
捐赠科研通 4462799
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414664