Microstructure and characteristics of Cu-W composite prepared by W-coated Cu powder with different W contents

材料科学 微观结构 复合数 放电等离子烧结 极限抗拉强度 烧结 粒径 粒度 复合材料 纳米颗粒 电阻率和电导率 晶粒生长 分析化学(期刊) 冶金 化学工程 纳米技术 化学 电气工程 色谱法 工程类
作者
Xiuqing Li,Qi Wang,Shizhong Wei,Wenpeng Lou,Liujie Xu,Yucheng Zhou
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:892: 146090-146090 被引量:3
标识
DOI:10.1016/j.msea.2024.146090
摘要

In this study, nanometer W particles were added to Cu matrix as reinforcement phase, aiming to maintain the excellent electrical conductivity of Cu matrix while significantly improving the mechanical performance of Cu-W composite. Cu-W composite powder with W nanoparticle coated Cu was prepared after spray drying and two-step hydrogen reduction. Cu-W composite with different W contents (0 wt%, 5 wt%, 10 wt%, and 20 wt%) were fabricated by spark plasma sintering (SPS). The coating structure can refine Cu particle size and inhibit Cu grain growth during sintering. The impact of W nanoparticles on microstructure, physical and mechanical performance of Cu-W composite was studied. The average size of the W particles dispersed in Cu matrix ranged from 71.89 nm to 106.90 nm. Electron back-scatter diffraction (EBSD) statistics indicated that Cu-5 wt%W, Cu-10 wt%W, and Cu-20 wt%W composite had a mean grain size of 0.76 μm, 0.71 μm, and 0.57 μm, respectively. Cu-20 wt%W composite had a uniform W network-Cu pool structure. The room-temperature tensile strength of Cu-20 wt%W composite was up to 421.98 MPa, with an elongation of 10.91 %; and the room-temperature compressive yield strength reached 313.83 MPa, an increase of 71.76 % compared to pure Cu. Although adding W nanoparticles caused the decrease of electrical conductivity, the conductivity of all Cu-W samples exceeded 81 %. The (111) of Cu and (110) of W showed a semi-coherent relationship with a calculated mismatch parameter δ of 0.077 and good interfacial bonding. The strength of Cu-W composite was improved by the pinning effect of W nanoparticles as a result of the combined effect of fine grain and dispersion strengthening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助自信的冬日采纳,获得10
刚刚
sky123发布了新的文献求助10
刚刚
WXK@945完成签到,获得积分10
刚刚
我是老大应助司徒无剑采纳,获得10
1秒前
mmol发布了新的文献求助10
3秒前
张牧之完成签到 ,获得积分10
4秒前
FashionBoy应助iufan采纳,获得10
4秒前
4秒前
xudonghui完成签到,获得积分10
4秒前
Una发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
小杜完成签到,获得积分20
7秒前
Akim应助iufan采纳,获得10
8秒前
8秒前
2113完成签到,获得积分10
9秒前
xudonghui发布了新的文献求助10
9秒前
小杜发布了新的文献求助10
10秒前
在水一方应助iufan采纳,获得10
11秒前
光亮天抒发布了新的文献求助10
11秒前
都是发布了新的文献求助30
12秒前
kai发布了新的文献求助10
13秒前
充电宝应助绿豆不加糖采纳,获得10
14秒前
今后应助iufan采纳,获得10
14秒前
sherrinford完成签到,获得积分10
15秒前
yiheng完成签到,获得积分10
16秒前
16秒前
Ruilin完成签到 ,获得积分10
16秒前
16秒前
wanci应助酷酷妙梦采纳,获得10
16秒前
17秒前
zyfqpc应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825