亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extraction of pine wilt disease based on a two-stage unmanned aerial vehicle deep learning method

计算机科学 人工智能 树(集合论) 深度学习 人工神经网络 机器学习 目标检测 特征提取 模式识别(心理学) 数学 数学分析
作者
Xin Huang,Weilin Gang,Jiayi Li,Zhili Wang,Qun Wang,Yuegang Liang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (01) 被引量:1
标识
DOI:10.1117/1.jrs.18.014503
摘要

Forestry pests pose a significant threat to forest health, making precise extraction of infested trees a vital aspect of forest protection. In recent years, deep learning has achieved substantial success in detecting infestations. However, when applying existing deep learning methods to infested tree detection, challenges arise, such as limited training samples and confusion between forest areas and artificial structures. To address these issues, this work proposes a two-stage hierarchical semi-supervised deep learning approach based on unmanned aerial vehicle visible images to achieve the individual extraction of each pine wilt disease (PWD). The approach can automatically detect the positions and crown extents of each infested tree. The comprehensive framework includes the following key steps: (a) considering the disparities in global image representation between forest areas and artificial structures, a scene classification network named MobileNetV3 is trained to effectively differentiate between forested regions and other artificial structures. (b) Considering the high cost of manually annotating and incomplete labeling of infested tree samples, a semi-supervised infested tree samples mining method is introduced, significantly reducing the workload of sample annotation. Ultimately, this method is integrated into the YOLOv7 object detection network, enabling rapid and reliable detection of infested trees. Experimental results demonstrate that, with a confidence threshold of 0.15 and using the semi-supervised sample mining framework, the number of samples increases from 53,046 to 93,544. Precision evaluation metrics indicate a 5.8% improvement in recall and a 2.6% increase in mean average precision@.5. The final test area prediction achieves an overall accuracy of over 80% and the recall rate of over 90%, indicating the effectiveness of the proposed method in PWD detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJJ完成签到 ,获得积分10
19秒前
25秒前
28秒前
量子星尘发布了新的文献求助10
36秒前
1分钟前
1分钟前
sfx发布了新的文献求助10
1分钟前
sfx完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
FashionBoy应助小梦采纳,获得10
1分钟前
2分钟前
6666666666完成签到 ,获得积分10
2分钟前
2分钟前
Owen应助bbdd2334采纳,获得10
2分钟前
2分钟前
爱宝乐宝福宝完成签到,获得积分10
2分钟前
ii完成签到 ,获得积分10
2分钟前
111111111完成签到,获得积分10
2分钟前
心灵美语兰完成签到 ,获得积分10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
善学以致用应助Perry采纳,获得10
4分钟前
4分钟前
bbdd2334发布了新的文献求助10
4分钟前
4分钟前
舒适踏歌发布了新的文献求助20
4分钟前
4分钟前
彭于晏应助bbdd2334采纳,获得10
4分钟前
JrPaleo101发布了新的文献求助50
5分钟前
5分钟前
5分钟前
小梦发布了新的文献求助10
5分钟前
5分钟前
ccyy完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264