Multi-modal imaging genetics data fusion by deep auto-encoder and self-representation network for Alzheimer's disease diagnosis and biomarkers extraction

计算机科学 判别式 人工智能 影像遗传学 神经影像学 自编码 模式识别(心理学) 深度学习 传感器融合 稀疏逼近 外部数据表示 代表(政治) 功能磁共振成像 机器学习 医学 神经科学 放射科 心理学 政治 政治学 法学
作者
Cui-Na Jiao,Ying-Lian Gao,Daohui Ge,Junliang Shang,Jin‐Xing Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107782-107782 被引量:1
标识
DOI:10.1016/j.engappai.2023.107782
摘要

Alzheimer's disease (AD) is an incurable neurodegenerative disease, so it is important to intervene in the early stage of the disease. Brain imaging genetics is an effective technique to identify AD-related biomarkers, which can early diagnosis of AD patients once they are clinically verified. With the development of medical imaging and gene sequencing techniques, the association analysis between multi-modal imaging data and genetic data has garnered increasing attention. However, current imaging genetics studies have problem with non-intuitive data fusion. Meanwhile, the characteristics of multi-modal imaging genetics data are high-dimensional, non-linearity, and fewer subjects, so it is necessary to select effective features. In this paper, a multi-modal data fusion framework by deep auto-encoder and self-representation (MFASN) was proposed for early diagnosis of AD. First, a multi-modality brain network was constructed by combining information from the resting-state functional magnetic resonance imaging (fMRI) data and structural magnetic resonance imaging (sMRI) data. Then, we utilized the deep auto-encoder to achieve non-linear transformations and select the informative features. A sparse self-representation module was employed to capture the multi-subspaces structure of the latent representation. At last, a multi-task structured sparse association model was developed to fully mine correlations between the genetic data and multi-modal brain network features. Experiments on AD neuroimaging initiative datasets proved the superiority of the proposed method, while discovering discriminative biomarkers were strongly associated with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Fen应助独特的梦菲采纳,获得10
2秒前
激动的猫咪完成签到,获得积分20
2秒前
4秒前
5秒前
内向的雪旋完成签到,获得积分20
6秒前
7秒前
ixueyi完成签到,获得积分10
7秒前
Cinderpelt发布了新的文献求助10
8秒前
9秒前
桥豆抹茶发布了新的文献求助10
9秒前
qmx发布了新的文献求助10
10秒前
ZihuiCCCC完成签到,获得积分20
10秒前
Singularity应助草帽采纳,获得10
12秒前
hhhh发布了新的文献求助30
13秒前
ZC完成签到,获得积分10
17秒前
淡然夜白完成签到 ,获得积分10
18秒前
19秒前
20秒前
林齐发布了新的文献求助10
22秒前
流年完成签到,获得积分10
25秒前
tjfwg发布了新的文献求助10
26秒前
拼搏雨竹完成签到 ,获得积分10
26秒前
leslie发布了新的文献求助10
27秒前
科目三应助萌仔防守采纳,获得30
27秒前
蜗牛星星完成签到,获得积分10
28秒前
昶曜发布了新的文献求助10
29秒前
SS完成签到,获得积分0
30秒前
30秒前
31秒前
32秒前
scot完成签到,获得积分0
34秒前
阿星给我冲完成签到,获得积分10
34秒前
36秒前
英勇的老头完成签到,获得积分10
37秒前
桥豆抹茶完成签到,获得积分10
37秒前
37秒前
香蕉觅云应助Mercury采纳,获得10
37秒前
38秒前
鸡蛋布丁完成签到 ,获得积分10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503