Multi-modal imaging genetics data fusion by deep auto-encoder and self-representation network for Alzheimer's disease diagnosis and biomarkers extraction

计算机科学 判别式 人工智能 影像遗传学 神经影像学 自编码 模式识别(心理学) 深度学习 传感器融合 稀疏逼近 外部数据表示 代表(政治) 功能磁共振成像 机器学习 医学 神经科学 放射科 心理学 政治 政治学 法学
作者
Cui-Na Jiao,Ying-Lian Gao,Daohui Ge,Junliang Shang,Jin‐Xing Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:130: 107782-107782 被引量:6
标识
DOI:10.1016/j.engappai.2023.107782
摘要

Alzheimer's disease (AD) is an incurable neurodegenerative disease, so it is important to intervene in the early stage of the disease. Brain imaging genetics is an effective technique to identify AD-related biomarkers, which can early diagnosis of AD patients once they are clinically verified. With the development of medical imaging and gene sequencing techniques, the association analysis between multi-modal imaging data and genetic data has garnered increasing attention. However, current imaging genetics studies have problem with non-intuitive data fusion. Meanwhile, the characteristics of multi-modal imaging genetics data are high-dimensional, non-linearity, and fewer subjects, so it is necessary to select effective features. In this paper, a multi-modal data fusion framework by deep auto-encoder and self-representation (MFASN) was proposed for early diagnosis of AD. First, a multi-modality brain network was constructed by combining information from the resting-state functional magnetic resonance imaging (fMRI) data and structural magnetic resonance imaging (sMRI) data. Then, we utilized the deep auto-encoder to achieve non-linear transformations and select the informative features. A sparse self-representation module was employed to capture the multi-subspaces structure of the latent representation. At last, a multi-task structured sparse association model was developed to fully mine correlations between the genetic data and multi-modal brain network features. Experiments on AD neuroimaging initiative datasets proved the superiority of the proposed method, while discovering discriminative biomarkers were strongly associated with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助可爱的菠萝采纳,获得30
3秒前
3秒前
彭于晏应助FleurdelisDZhang采纳,获得10
6秒前
糖布里部完成签到,获得积分10
6秒前
mammer完成签到 ,获得积分10
9秒前
JCC发布了新的文献求助10
10秒前
12秒前
13秒前
bkagyin应助lmh采纳,获得10
13秒前
小包完成签到 ,获得积分20
14秒前
Vivian完成签到,获得积分10
15秒前
雨天完成签到,获得积分10
15秒前
15秒前
15秒前
fangyuan完成签到,获得积分10
15秒前
Chenq1nss发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
躺躺发布了新的文献求助10
19秒前
fangyuan发布了新的文献求助10
20秒前
追寻的怜容完成签到,获得积分10
20秒前
酷波er应助tkx是流氓兔采纳,获得10
21秒前
ding应助ffffffff采纳,获得30
22秒前
WWW关闭了WWW文献求助
23秒前
春和景明完成签到,获得积分10
23秒前
啊啊完成签到,获得积分20
25秒前
月上柳梢头A1完成签到,获得积分10
26秒前
无花果应助淡然老头采纳,获得10
29秒前
30秒前
李健的粉丝团团长应助ylh采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
小马甲应助科研通管家采纳,获得10
35秒前
赘婿应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
赘婿应助科研通管家采纳,获得10
35秒前
天天快乐应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
小马甲应助科研通管家采纳,获得10
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309