Assembly of Crack-Free Photonic Crystals: Fundamentals, Emerging Strategies, and Perspectives

光子晶体 范德瓦尔斯力 材料科学 纳米颗粒 聚苯乙烯 纳米技术 结构着色 聚合物 纳米结构 胶体晶体 光子学 化学物理 分子 光电子学 胶体 化学工程 化学 复合材料 工程类 有机化学
作者
An‐Quan Xie,Qing Li,Yiran Xi,Liangliang Zhu,Su Chen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 403-415 被引量:15
标识
DOI:10.1021/accountsmr.2c00236
摘要

ConspectusPhotonic crystals (PCs) with a periodically arranged structure have aroused enormous interest in the regulation of photon motion for their unique property of a photonic band gap (PBG), which can block the propagation of specific electromagnetic waves. The PBG is generated by the periodic modulation of the refractive indices between the building blocks and surrounding medium, which could lead to a vivid structural color when PBG is located in the visible spectra. Because of the special properties of maneuvering and controlling photons in the visible range, considerable attention has been devoted to the PC in relation to various applications in color signage, display, biological and chemical sensors, detection, optoelectronic devices, etc. Notably, PCs have long existed in nature, such as gem opals, which are natural silica gel particle aggregations. Many creatures also comprise the PC nanostructures to adapt to nature, for example, butterfly, peacock, chameleon, and so forth. Inspired by nature, the bottom-up self-assembly of colloidal nanoparticles has been manifested to be a convenient manmade method to construct PC nanostructures. Similar to the synthesis of new compound molecules by the chemical bonding of atoms, colloidal nanoparticles can be driven to form aggregates with a periodic ordered structure by physical or chemical driving forces, such as capillary forces and surface tension, hydrogen bonds, van der Waals forces, etc. Typically, such nanoparticles consist of SiO2, ZnO, Fe3O4, or organic polymers (polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(acrylic acid) (PAA), etc.). The nanoparticle assembly process is governed by preferential thermodynamic states to stack together in a minimized free energy. However, the self-assembly of colloidal nanoparticles is easily susceptible to various external factors (solvent, substrate, temperature, concentration, zeta potential, pH, etc.), accidentally leading to the formation of unfavorable defects. Large-scale preparation of crack-free PCs is the critical limit for real-world application of PCs industrialization. Recently, the research on the mechanism and eliminating methods of defect creation in the colloidal PC assembly process has become an important research hotspot. This Account reviews the research progress on the crack-free PCs assembly methods, including the fundamental theory of PCs assembly, the formation mechanisms and elimination methods of assembly defects based on the assembly driving force manipulation, and developing high-quality colloidal nanoparticles. We outline three main mechanisms of crack generation during PC self-assembly, in which the assembly driving forces that are influenced by external factors to break the dynamic balance of colloidal particle assembly are discussed in detail. Subsequently, a series of crack elimination strategies, like novel high-performance assembly unit preparation (acrylic ester, tertiary-carbon, and fluorinated colloidal particles) and various assembly driving forces introduction, including hydrophobic force driving assembly (HFDA), molecular surface force-assisted assembly (MSFA), soft substrate-induced assembly (SSA), "colloid skin" enhanced assembly (CSE), template-assisted method (TA), spin-coating, layer-by-layer scooping transfer (LST) technique, inkjet printing, centrifugation-assisted assembly (CA), microfluidic technique, and modified vertical deposition method, are summarized. Eventually, we provide an outlook on more efficient techniques that can accomplish large-area and rapid construction of PCs with high crystallinity, no cracks, and vivid structure color to promote the industrialization of PC materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dfhjjj完成签到,获得积分10
1秒前
清爽从梦发布了新的文献求助10
2秒前
健康的犀牛完成签到,获得积分10
3秒前
zy完成签到,获得积分10
4秒前
BZPL完成签到,获得积分10
5秒前
wqwq69完成签到,获得积分10
5秒前
机灵的千琴完成签到,获得积分10
6秒前
巫马沛春完成签到,获得积分10
6秒前
123完成签到,获得积分10
7秒前
7秒前
sunshine完成签到,获得积分10
7秒前
倔强毛驴侠完成签到 ,获得积分10
8秒前
8秒前
摸鱼鱼完成签到,获得积分10
9秒前
美少叔叔完成签到 ,获得积分10
9秒前
畅快的书包完成签到,获得积分10
10秒前
sunshine发布了新的文献求助10
10秒前
伯赏凝旋完成签到 ,获得积分10
11秒前
雾散完成签到,获得积分10
11秒前
木偶橘完成签到,获得积分10
11秒前
糊涂的雁易完成签到,获得积分10
11秒前
zyy完成签到,获得积分10
12秒前
superspace完成签到,获得积分10
13秒前
萝卜特二完成签到,获得积分10
13秒前
夜白完成签到,获得积分0
13秒前
14秒前
淡然子轩完成签到,获得积分10
14秒前
虚幻谷秋完成签到,获得积分10
14秒前
14秒前
zyy发布了新的文献求助10
14秒前
fool完成签到,获得积分10
15秒前
合适的巧荷完成签到,获得积分10
15秒前
老实乌冬面完成签到 ,获得积分10
15秒前
小苹果完成签到,获得积分10
16秒前
认真的一刀完成签到,获得积分10
17秒前
李李李李完成签到,获得积分10
17秒前
三巡完成签到,获得积分10
18秒前
活力听兰发布了新的文献求助30
18秒前
19秒前
开心香岚发布了新的文献求助10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257240
求助须知:如何正确求助?哪些是违规求助? 2899132
关于积分的说明 8303865
捐赠科研通 2568424
什么是DOI,文献DOI怎么找? 1395064
科研通“疑难数据库(出版商)”最低求助积分说明 652936
邀请新用户注册赠送积分活动 630683