Assembly of Crack-Free Photonic Crystals: Fundamentals, Emerging Strategies, and Perspectives

光子晶体 范德瓦尔斯力 材料科学 纳米颗粒 聚苯乙烯 纳米技术 结构着色 聚合物 纳米结构 胶体晶体 光子学 化学物理 分子 光电子学 胶体 化学工程 化学 复合材料 工程类 有机化学
作者
An‐Quan Xie,Qing Li,Yiran Xi,Liangliang Zhu,Su Chen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 403-415 被引量:25
标识
DOI:10.1021/accountsmr.2c00236
摘要

ConspectusPhotonic crystals (PCs) with a periodically arranged structure have aroused enormous interest in the regulation of photon motion for their unique property of a photonic band gap (PBG), which can block the propagation of specific electromagnetic waves. The PBG is generated by the periodic modulation of the refractive indices between the building blocks and surrounding medium, which could lead to a vivid structural color when PBG is located in the visible spectra. Because of the special properties of maneuvering and controlling photons in the visible range, considerable attention has been devoted to the PC in relation to various applications in color signage, display, biological and chemical sensors, detection, optoelectronic devices, etc. Notably, PCs have long existed in nature, such as gem opals, which are natural silica gel particle aggregations. Many creatures also comprise the PC nanostructures to adapt to nature, for example, butterfly, peacock, chameleon, and so forth. Inspired by nature, the bottom-up self-assembly of colloidal nanoparticles has been manifested to be a convenient manmade method to construct PC nanostructures. Similar to the synthesis of new compound molecules by the chemical bonding of atoms, colloidal nanoparticles can be driven to form aggregates with a periodic ordered structure by physical or chemical driving forces, such as capillary forces and surface tension, hydrogen bonds, van der Waals forces, etc. Typically, such nanoparticles consist of SiO2, ZnO, Fe3O4, or organic polymers (polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(acrylic acid) (PAA), etc.). The nanoparticle assembly process is governed by preferential thermodynamic states to stack together in a minimized free energy. However, the self-assembly of colloidal nanoparticles is easily susceptible to various external factors (solvent, substrate, temperature, concentration, zeta potential, pH, etc.), accidentally leading to the formation of unfavorable defects. Large-scale preparation of crack-free PCs is the critical limit for real-world application of PCs industrialization. Recently, the research on the mechanism and eliminating methods of defect creation in the colloidal PC assembly process has become an important research hotspot. This Account reviews the research progress on the crack-free PCs assembly methods, including the fundamental theory of PCs assembly, the formation mechanisms and elimination methods of assembly defects based on the assembly driving force manipulation, and developing high-quality colloidal nanoparticles. We outline three main mechanisms of crack generation during PC self-assembly, in which the assembly driving forces that are influenced by external factors to break the dynamic balance of colloidal particle assembly are discussed in detail. Subsequently, a series of crack elimination strategies, like novel high-performance assembly unit preparation (acrylic ester, tertiary-carbon, and fluorinated colloidal particles) and various assembly driving forces introduction, including hydrophobic force driving assembly (HFDA), molecular surface force-assisted assembly (MSFA), soft substrate-induced assembly (SSA), "colloid skin" enhanced assembly (CSE), template-assisted method (TA), spin-coating, layer-by-layer scooping transfer (LST) technique, inkjet printing, centrifugation-assisted assembly (CA), microfluidic technique, and modified vertical deposition method, are summarized. Eventually, we provide an outlook on more efficient techniques that can accomplish large-area and rapid construction of PCs with high crystallinity, no cracks, and vivid structure color to promote the industrialization of PC materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
追风筝的人完成签到,获得积分10
2秒前
大个应助Huang采纳,获得10
2秒前
朱z完成签到,获得积分10
2秒前
栗子完成签到,获得积分10
2秒前
LL完成签到,获得积分10
2秒前
cyndi完成签到,获得积分10
3秒前
飞0802完成签到,获得积分10
3秒前
April完成签到,获得积分10
3秒前
无限师完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
靓丽的熠彤完成签到,获得积分10
4秒前
乐观冥幽完成签到,获得积分10
4秒前
palace完成签到 ,获得积分10
4秒前
呆呆是一条鱼完成签到,获得积分10
5秒前
yangyu完成签到,获得积分10
6秒前
来日可追应助小小采纳,获得10
6秒前
elysia完成签到,获得积分10
6秒前
ug完成签到,获得积分10
7秒前
所所应助1256采纳,获得10
8秒前
9秒前
科研通AI6应助TiAmo采纳,获得10
9秒前
淡然柚子发布了新的文献求助10
10秒前
10秒前
星星完成签到,获得积分10
12秒前
追风少年完成签到 ,获得积分10
12秒前
Simpson完成签到 ,获得积分0
12秒前
kks569完成签到,获得积分10
12秒前
二十三月之夜完成签到,获得积分10
12秒前
TanXu发布了新的文献求助30
13秒前
xiao完成签到,获得积分20
13秒前
14秒前
Kelly完成签到,获得积分10
14秒前
山鲁佐德发布了新的文献求助10
14秒前
呼噜呼噜小完成签到,获得积分10
14秒前
要减肥的chao完成签到,获得积分10
15秒前
leishenwang完成签到,获得积分10
15秒前
若安在完成签到,获得积分10
16秒前
醋酸柠檬完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118495
求助须知:如何正确求助?哪些是违规求助? 4324442
关于积分的说明 13472092
捐赠科研通 4157447
什么是DOI,文献DOI怎么找? 2278444
邀请新用户注册赠送积分活动 1280187
关于科研通互助平台的介绍 1218907