Assembly of Crack-Free Photonic Crystals: Fundamentals, Emerging Strategies, and Perspectives

光子晶体 范德瓦尔斯力 材料科学 纳米颗粒 聚苯乙烯 纳米技术 结构着色 聚合物 纳米结构 胶体晶体 光子学 化学物理 分子 光电子学 胶体 化学工程 化学 复合材料 工程类 有机化学
作者
An‐Quan Xie,Qing Li,Yiran Xi,Liangliang Zhu,Su Chen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 403-415 被引量:25
标识
DOI:10.1021/accountsmr.2c00236
摘要

ConspectusPhotonic crystals (PCs) with a periodically arranged structure have aroused enormous interest in the regulation of photon motion for their unique property of a photonic band gap (PBG), which can block the propagation of specific electromagnetic waves. The PBG is generated by the periodic modulation of the refractive indices between the building blocks and surrounding medium, which could lead to a vivid structural color when PBG is located in the visible spectra. Because of the special properties of maneuvering and controlling photons in the visible range, considerable attention has been devoted to the PC in relation to various applications in color signage, display, biological and chemical sensors, detection, optoelectronic devices, etc. Notably, PCs have long existed in nature, such as gem opals, which are natural silica gel particle aggregations. Many creatures also comprise the PC nanostructures to adapt to nature, for example, butterfly, peacock, chameleon, and so forth. Inspired by nature, the bottom-up self-assembly of colloidal nanoparticles has been manifested to be a convenient manmade method to construct PC nanostructures. Similar to the synthesis of new compound molecules by the chemical bonding of atoms, colloidal nanoparticles can be driven to form aggregates with a periodic ordered structure by physical or chemical driving forces, such as capillary forces and surface tension, hydrogen bonds, van der Waals forces, etc. Typically, such nanoparticles consist of SiO2, ZnO, Fe3O4, or organic polymers (polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(acrylic acid) (PAA), etc.). The nanoparticle assembly process is governed by preferential thermodynamic states to stack together in a minimized free energy. However, the self-assembly of colloidal nanoparticles is easily susceptible to various external factors (solvent, substrate, temperature, concentration, zeta potential, pH, etc.), accidentally leading to the formation of unfavorable defects. Large-scale preparation of crack-free PCs is the critical limit for real-world application of PCs industrialization. Recently, the research on the mechanism and eliminating methods of defect creation in the colloidal PC assembly process has become an important research hotspot. This Account reviews the research progress on the crack-free PCs assembly methods, including the fundamental theory of PCs assembly, the formation mechanisms and elimination methods of assembly defects based on the assembly driving force manipulation, and developing high-quality colloidal nanoparticles. We outline three main mechanisms of crack generation during PC self-assembly, in which the assembly driving forces that are influenced by external factors to break the dynamic balance of colloidal particle assembly are discussed in detail. Subsequently, a series of crack elimination strategies, like novel high-performance assembly unit preparation (acrylic ester, tertiary-carbon, and fluorinated colloidal particles) and various assembly driving forces introduction, including hydrophobic force driving assembly (HFDA), molecular surface force-assisted assembly (MSFA), soft substrate-induced assembly (SSA), "colloid skin" enhanced assembly (CSE), template-assisted method (TA), spin-coating, layer-by-layer scooping transfer (LST) technique, inkjet printing, centrifugation-assisted assembly (CA), microfluidic technique, and modified vertical deposition method, are summarized. Eventually, we provide an outlook on more efficient techniques that can accomplish large-area and rapid construction of PCs with high crystallinity, no cracks, and vivid structure color to promote the industrialization of PC materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wysy应助nature2号采纳,获得10
1秒前
萧水白应助nature2号采纳,获得10
1秒前
去去去完成签到,获得积分10
1秒前
乔垣结衣应助伍秋望采纳,获得10
1秒前
lkk发布了新的文献求助10
2秒前
cxt完成签到,获得积分10
2秒前
所所应助ZL张莉采纳,获得10
2秒前
我能行完成签到,获得积分10
3秒前
3秒前
李静霆发布了新的文献求助10
3秒前
橘子完成签到,获得积分10
3秒前
范佳宁完成签到 ,获得积分10
4秒前
肉卷发布了新的文献求助10
4秒前
5秒前
6秒前
单薄雪枫完成签到,获得积分10
6秒前
SYLH应助霍明轩采纳,获得10
8秒前
8秒前
怡然文龙完成签到,获得积分10
8秒前
doin发布了新的文献求助10
9秒前
9秒前
9秒前
zoey完成签到,获得积分10
9秒前
,,完成签到,获得积分10
10秒前
10秒前
10秒前
Lucas应助爱吃姜的面条采纳,获得10
10秒前
斯文败类应助周周采纳,获得10
11秒前
li完成签到,获得积分10
11秒前
小郭应助飞云采纳,获得10
11秒前
xianwenyang完成签到 ,获得积分10
11秒前
等待的砖家完成签到,获得积分10
11秒前
ruby完成签到,获得积分10
11秒前
汉堡包应助yysghr采纳,获得10
11秒前
大模型应助yu5546采纳,获得10
12秒前
宣智完成签到,获得积分10
12秒前
张津浩完成签到,获得积分10
12秒前
福明明发布了新的文献求助10
13秒前
小二郎应助典雅的静采纳,获得10
13秒前
勤恳思卉发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344