清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Assembly of Crack-Free Photonic Crystals: Fundamentals, Emerging Strategies, and Perspectives

光子晶体 范德瓦尔斯力 材料科学 纳米颗粒 聚苯乙烯 纳米技术 结构着色 聚合物 纳米结构 胶体晶体 光子学 化学物理 分子 光电子学 胶体 化学工程 化学 复合材料 工程类 有机化学
作者
An‐Quan Xie,Qing Li,Yiran Xi,Liangliang Zhu,Su Chen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 403-415 被引量:25
标识
DOI:10.1021/accountsmr.2c00236
摘要

ConspectusPhotonic crystals (PCs) with a periodically arranged structure have aroused enormous interest in the regulation of photon motion for their unique property of a photonic band gap (PBG), which can block the propagation of specific electromagnetic waves. The PBG is generated by the periodic modulation of the refractive indices between the building blocks and surrounding medium, which could lead to a vivid structural color when PBG is located in the visible spectra. Because of the special properties of maneuvering and controlling photons in the visible range, considerable attention has been devoted to the PC in relation to various applications in color signage, display, biological and chemical sensors, detection, optoelectronic devices, etc. Notably, PCs have long existed in nature, such as gem opals, which are natural silica gel particle aggregations. Many creatures also comprise the PC nanostructures to adapt to nature, for example, butterfly, peacock, chameleon, and so forth. Inspired by nature, the bottom-up self-assembly of colloidal nanoparticles has been manifested to be a convenient manmade method to construct PC nanostructures. Similar to the synthesis of new compound molecules by the chemical bonding of atoms, colloidal nanoparticles can be driven to form aggregates with a periodic ordered structure by physical or chemical driving forces, such as capillary forces and surface tension, hydrogen bonds, van der Waals forces, etc. Typically, such nanoparticles consist of SiO2, ZnO, Fe3O4, or organic polymers (polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(acrylic acid) (PAA), etc.). The nanoparticle assembly process is governed by preferential thermodynamic states to stack together in a minimized free energy. However, the self-assembly of colloidal nanoparticles is easily susceptible to various external factors (solvent, substrate, temperature, concentration, zeta potential, pH, etc.), accidentally leading to the formation of unfavorable defects. Large-scale preparation of crack-free PCs is the critical limit for real-world application of PCs industrialization. Recently, the research on the mechanism and eliminating methods of defect creation in the colloidal PC assembly process has become an important research hotspot. This Account reviews the research progress on the crack-free PCs assembly methods, including the fundamental theory of PCs assembly, the formation mechanisms and elimination methods of assembly defects based on the assembly driving force manipulation, and developing high-quality colloidal nanoparticles. We outline three main mechanisms of crack generation during PC self-assembly, in which the assembly driving forces that are influenced by external factors to break the dynamic balance of colloidal particle assembly are discussed in detail. Subsequently, a series of crack elimination strategies, like novel high-performance assembly unit preparation (acrylic ester, tertiary-carbon, and fluorinated colloidal particles) and various assembly driving forces introduction, including hydrophobic force driving assembly (HFDA), molecular surface force-assisted assembly (MSFA), soft substrate-induced assembly (SSA), "colloid skin" enhanced assembly (CSE), template-assisted method (TA), spin-coating, layer-by-layer scooping transfer (LST) technique, inkjet printing, centrifugation-assisted assembly (CA), microfluidic technique, and modified vertical deposition method, are summarized. Eventually, we provide an outlook on more efficient techniques that can accomplish large-area and rapid construction of PCs with high crystallinity, no cracks, and vivid structure color to promote the industrialization of PC materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷平凡完成签到,获得积分10
10秒前
荔枝发布了新的文献求助10
44秒前
50秒前
连安阳完成签到,获得积分10
57秒前
1分钟前
荔枝发布了新的文献求助10
1分钟前
丁老三完成签到 ,获得积分10
2分钟前
2分钟前
Jim发布了新的文献求助10
3分钟前
3分钟前
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
Unlisted发布了新的文献求助10
3分钟前
落寞的又菡完成签到,获得积分10
3分钟前
4分钟前
端庄洪纲完成签到 ,获得积分10
4分钟前
5分钟前
米修发布了新的文献求助10
5分钟前
5分钟前
米修完成签到,获得积分20
5分钟前
CodeCraft应助居家小可采纳,获得10
5分钟前
6分钟前
苗苗发布了新的文献求助10
6分钟前
6分钟前
苗苗完成签到 ,获得积分10
6分钟前
loathebm发布了新的文献求助10
6分钟前
NexusExplorer应助loathebm采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
7分钟前
7分钟前
居家小可发布了新的文献求助10
7分钟前
我睡觉的时候不困完成签到 ,获得积分10
7分钟前
居家小可完成签到,获得积分10
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
如歌完成签到,获得积分10
7分钟前
不羁之魂完成签到,获得积分10
8分钟前
8分钟前
9分钟前
飞快的孱发布了新的文献求助10
9分钟前
CYT完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108