罗丹明B
异质结
降级(电信)
光降解
光催化
电子顺磁共振
材料科学
化学工程
可见光谱
光化学
化学
光电子学
催化作用
计算机科学
物理
工程类
有机化学
核磁共振
电信
作者
Yusheng Yang,Mengjiao Xu,Lili Ai,Nannan Guo,Changyu Leng,Chuan Tan,Min Lu,Luxiang Wang,Ling Huang,Dianzeng Jia
标识
DOI:10.1016/j.jece.2023.109873
摘要
The construction of heterojunctions is an optimal strategy to achieve efficient charge separation and enhance photocatalytic performance. Hence, the flower sphere-like Bi2WO6/Bi-MOF heterojunction were fabricated by in situ growth method of Bi2WO6 on Bi-MOF, and the photocatalytic degradation of pollutants under visible light irradiation was conducted to evaluate their photocatalytic performance. The optimized Bi2WO6/Bi-MOF-0.4 photocatalyst exhibited high photocatalytic activity. The degradation efficiencies of Rhodamine B (RhB) and tetracycline hydrochloride (TC) were 96 % and 80 % within 60 min of light irradiation respectively. The superior photocatalytic activity can be ascribed to the constructed type II heterojunction interface between Bi-MOF and Bi2WO6, which significantly accelerated the separation efficiency of interface charges. The possible mechanism for photocatalytic degradation of the pollutant was proposed by Electron paramagnetic resonance (EPR) and band structure. In addition, the degradation pathways of intermediates during photodegradation were investigated by liquid chromatography analysis with mass spectrometry (LC-MS).
科研通智能强力驱动
Strongly Powered by AbleSci AI