Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks

血管病学 卷积神经网络 医学 分割 心脏磁共振 磁共振成像 拉伤 心脏病学 人工智能 内科学 放射科 核磁共振 计算机科学 物理
作者
Hugo Barbaroux,Karl Kunze,Radhouène Neji,Muhummad Sohaib Nazir,Dudley J. Pennell,Sònia Nielles‐Vallespin,Andrew D. Scott,Alistair A. Young
出处
期刊:Journal of Cardiovascular Magnetic Resonance [Springer Nature]
卷期号:25 (1): 16-16 被引量:11
标识
DOI:10.1186/s12968-023-00927-y
摘要

Cine Displacement Encoding with Stimulated Echoes (DENSE) facilitates the quantification of myocardial deformation, by encoding tissue displacements in the cardiovascular magnetic resonance (CMR) image phase, from which myocardial strain can be estimated with high accuracy and reproducibility. Current methods for analyzing DENSE images still heavily rely on user input, making this process time-consuming and subject to inter-observer variability. The present study sought to develop a spatio-temporal deep learning model for segmentation of the left-ventricular (LV) myocardium, as spatial networks often fail due to contrast-related properties of DENSE images. 2D + time nnU-Net-based models have been trained to segment the LV myocardium from DENSE magnitude data in short- and long-axis images. A dataset of 360 short-axis and 124 long-axis slices was used to train the networks, from a combination of healthy subjects and patients with various conditions (hypertrophic and dilated cardiomyopathy, myocardial infarction, myocarditis). Segmentation performance was evaluated using ground-truth manual labels, and a strain analysis using conventional methods was performed to assess strain agreement with manual segmentation. Additional validation was performed using an externally acquired dataset to compare the inter- and intra-scanner reproducibility with respect to conventional methods. Spatio-temporal models gave consistent segmentation performance throughout the cine sequence, while 2D architectures often failed to segment end-diastolic frames due to the limited blood-to-myocardium contrast. Our models achieved a DICE score of 0.83 ± 0.05 and a Hausdorff distance of 4.0 ± 1.1 mm for short-axis segmentation, and 0.82 ± 0.03 and 7.9 ± 3.9 mm respectively for long-axis segmentations. Strain measurements obtained from automatically estimated myocardial contours showed good to excellent agreement with manual pipelines, and remained within the limits of inter-user variability estimated in previous studies. Spatio-temporal deep learning shows increased robustness for the segmentation of cine DENSE images. It provides excellent agreement with manual segmentation for strain extraction. Deep learning will facilitate the analysis of DENSE data, bringing it one step closer to clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助想飞的猪采纳,获得10
刚刚
很多事罚款完成签到,获得积分10
刚刚
Monster发布了新的文献求助10
1秒前
CodeCraft应助沐沐1003采纳,获得10
1秒前
Suaia完成签到,获得积分10
2秒前
万能图书馆应助Boo采纳,获得10
2秒前
2秒前
bono完成签到 ,获得积分10
6秒前
沉默忘幽发布了新的文献求助10
6秒前
8秒前
一蓑烟雨任平生应助Auto采纳,获得10
8秒前
刘杰青发布了新的文献求助10
10秒前
tttttt完成签到,获得积分10
10秒前
李爱国应助tkdzjr12345采纳,获得10
11秒前
11秒前
vera完成签到 ,获得积分10
11秒前
顾矜应助骨筋中外采纳,获得10
12秒前
21发布了新的文献求助10
13秒前
斯文败类应助我哈哈哈哈采纳,获得10
13秒前
CipherSage应助沐沐1003采纳,获得10
13秒前
14秒前
彩色的奄完成签到,获得积分10
14秒前
15秒前
nglmy77完成签到 ,获得积分10
15秒前
所所应助Kelly采纳,获得10
19秒前
刘杰青完成签到,获得积分10
20秒前
tkdzjr12345发布了新的文献求助10
20秒前
22秒前
充电宝应助沐沐1003采纳,获得10
23秒前
斯文败类应助JaneBing采纳,获得10
24秒前
su完成签到 ,获得积分10
25秒前
打打应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Percy完成签到 ,获得积分10
26秒前
Monster完成签到,获得积分20
27秒前
28秒前
28秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388028
求助须知:如何正确求助?哪些是违规求助? 3000553
关于积分的说明 8791980
捐赠科研通 2686591
什么是DOI,文献DOI怎么找? 1471709
科研通“疑难数据库(出版商)”最低求助积分说明 680474
邀请新用户注册赠送积分活动 673206